
Doc 8.2 d2, p.1

User’s Manual for CLARAty Vision Package

1. Introduction

Congratulations on selecting CLARAty, the Coupled Layer Architecture for Robot
Automomy, as the platform for your computer vision application. CLARAty provides a
library of written-and-tested data structures and functions to handle common image
processing and computer vision tasks. It also provides facilities to quickly build your
application for many targets, such as Linux, Solaris, and VxWorks, and to quickly
integrate your code with existing rover code so that you can quickly springboard from
algorithm concept to field-tested prototype.

CLARAty is intended to provide one, centralized, easy to access code repository. Ffuture
applications can then be built on a common code base, and added back into the
repository, to facilitate adapting/integrating code from separate projects, thus accelerating
development in future projects. There are several other computer vision libraries just
within JPL Machine Vision community, but CLARAty integrates its vision libraries with
robotics libraries, so that your vision code can easily transition to testing on rover
vehicles.

The CLARAty vision package attempts to provide functionality comparable to that of
other packages, to minimize the difficulty of transitioning from existing libraries. It is
also designed to grow as new projects require new functionality. If we missed something
that you need, the package can be modified to add functionality, streamline/optimize
modules, or even add competing algorithms for existing functions.

This manual outlines how to get started using CLARAty and covers the data structures
and functions in the CLARAty Vision package. As a special bonus, it also lists constants
used by the CLARAty modules and has a few possibly useful appendices. For additional
information about CLARAty, including more details on usage and support for rovers, see
http://claraty.jpl.nasa.gov. For more information about the vision package, perhaps
including the latest version of this document, as well as another version of how to get
started, visit http://claraty.jpl.nasa.gov/vision. For even more assistance, visit
http://claraty.jpl.nasa.gov, navigate to Project ⇒ Team ⇒ Developers, and choose a
developer to contact.

Doc 8.2 d2, p.2

2. Getting Started with CLARty Vision
Here are the steps to follow to use CLARAty, as “condensed” from
http://claraty.jpl.nasa.gov/new_site/software/how_to/index.html. If you find anything
incorrect, missing, or problematically vague in this description, let me know
(rmadison@jpl.nasa.gov) so I can fix it.

2.1 Step 1: Set up your Computer
The first step is to set up your computer to use CLARAty.

• Get an AFS account. If you can reach /afs/jpl/home/yourinitial/yourusername,
then you probably already have an AFS account. Otherwise, visit
http://eis.jpl.nasa.gov/fil/afs/client/, click any operating system and then click
“Create an AFS account.” It will ask you for your EIS password, which is
probably the password you use for the timecard system.

• Make sure your machine has AFS. CLARAty is set up for unix/linux, so you’ll

want a machine that runs one of those. If you can see /afs on the machine, then it
has AFS. If you can’t see /afs, go to http://eis.jpl.nasa.gov/fil/afs/client/, click on
the unix link, and click the various, self-explanatory links to set up a client. The
telerobotics machines all (except Helios) seem to have AFS.

CLARAty is not set up for developing under Windows, but you can do it with
some extra effort. If you plan to develop on a PC, you might want AFS on your
PC. Go to http://eis.jpl.nasa.gov/fil/afs/client/, click on the link for your operating
system, then click “Check for AFS Availability” to see whether you already have
an AFS client. Use the other links to get a client if you don’t have one, and to
learn how to log in and map your AFS space to a network drive.

• Get added to the CLARAty group. E-mail admin@robotics and ask to be

added to the CLARAty group.

• Set up your unix/linux environment.
o Run tcsh, not csh. Have Bill Adler (or other sysadmin) set that for you, or

run it yourself each time you want to use CLARAty.
o Run klog to log yourself in to AFS. CLARAty code and compiler helpers

are on AFS.
o Source /afs/jpl/group/claraty/YaM-Configs/SOURCEME-CLARAty-jpl to

set up variables that the YaM make-system uses. If you also work on
another project that uses YaM, it may require a conflicting script, so you
probably shouldn’t source the script in your .tcshrc. Instead, define aliases
to the scripts, and interactively decide which to call.

Doc 8.2 d2, p.3

2.2 Step 2: Check out some CLARAty code
The reason to use CLARAty is to have access to pre-written, pre-tested code. Here is
how you get that code.

• Make a sandbox. This is where you can work on copies of repository code
without impacting anybody else. Use the command, “yam setup –nobuild –nolink
–d <dir>”, where <dir> is a not-yet-existing directory that will become your
sandbox. Yam will ask some questions and then pop up an editor with the file
YAM.config. Quit out of the editor. CLARAty will copy files into your sandbox.

• See what modules you want. This document (later chapters) names modules as

it describes functionality, but it is probably not up to date. For a full list of
modules, visit http://claraty.jpl.nasa.gov/new_site, click on the software tab, then
the package tab, and then the link for the “module database.” That database is
searchable by partial module name, and most module names contain obvious
keywords. The database requires a password (the website says how to get it).
Until you get the password, you might search through the repository on the
telerobotics machines, at /afs/jpl/group/claraty/private/YaM-CLARAty/Module-
Releases.

• Check out module(s). You can check out a module as a work module (which you

can modify) or a link module (which you can look at and link with but not
modify).

o Tell CLARAty what modules you want by adding module names to your

sandbox’s YAM.config file. The easy way to add a module, and any
modules it uses, is to cd into your sandbox and call, “yam config –add
<modulename> [-towork]”. The optional –towork flag makes the module a
work module. The command will open YAM.config in an editor.
YAM.config has sections that list work modules, link modules, and branch
path. It should have the module(s) you just added and the SiteDefs
module. If a module is listed as a work module and a link module, you
might eliminate it from the list of link modules. Otherwise, just quit the
editor to complete the command. You can add multiple modules this way.

o Check out new modules in the YAM.config file by calling “yam rebuild –
nobuild -nolink.” If you add more modules later, call yam rebuild again.
If you forget the –nobuild or –nolink flags, the process will probably hang.

o You can edit YAM.config by hand, to change the version of a module or
change whether it is a link or work module. If you add/change a link
module, call “yam relink” to update the links that point to the old link
module. If you add a work module, call yam rebuild to get the new code.
If you change a work module, delete the module’s directory in sandbox/src
and then call yam rebuild to get the new code. You may need to yam
relink again as well.

Doc 8.2 d2, p.4

2.2a Optional Step: Porting to a PC
If you want to develop on a PC, your best bet is to have your sandbox in your unix AFS
directory and to mount that directory as a drive on your PC. See above for how to get
AFS on your PC. You can create a Visual C++ project and add the code from your
sandbox directory. Alternately, if you don’t have/want AFS, SSH is a convenient way to
copy source code from your sandbox to your PC. You probably only need *.cc, *.h, and
Makefile. It is a good idea to keep code from different modules in separate directories, as
it is in the sandbox, in case you want to reinsert the code into CLARAty at some point.

Having done these things, you must now handle the following complications.

• Visual C++ version 6.0 cannot understand “.cc” as a C++ file extension. You
must rename C++ files to “.cpp” before adding them to your project. I
recommend writing little shell scripts, such as, “foreach i (`ls *.cc`); mv $i
${i:r}.cpp; end” to convert files between .cpp and .cc.

• Visual C++ does not use the module’s Makefile. You’ll want to make a project

and add the code files that the Makefile lists as lib sources. If the Makefile
specifies extra include directories, using a CPLUSPLUS_INCLUDES statement,
add those extra include directories to your project file. If the directory paths
include environment variables such as WIND_BASE (for vxworks files), you can
probably printenv to see what they evaluate to, but you may not have equivalent
files on your PC.

• Many CLARAty files #include headers from the sandbox’s include directory,

often accessing its subdirectories in the process. If you mount AFS on the PC,
just add the sandbox’ include directory to your C++ project’s list of include
directories. If you copy files to the PC instead, your best option probably is to
copy the sandbox include directory and add it to the project’s list of include
directories. You will have two copies of each include file, which you need to
keep synchronized, but you won’t have to change a lot of #include statements to
make things compile.

• Not all CLARAty code is Win32 compliant. The code uses #ifdefs to handle

different operating systems, but WIN32 is not supported, so the #ifdefs might not
be set up properly. Interestingly, there are #ifdefs that check WIN32 and/or
MSCVER, which look like windows support, but they are not always sufficient or
even correct. If you find such problems, please tell me.

• Iostream and Iostream.h are different under Windows, but not under unix.

CLARAty uses them interchangeably. If you find that stream I/O items such as
<< and cout mysteriously fail to link in your code, try converting all of your
iostream.h includes to iostream.

Doc 8.2 d2, p.5

2.3 Step 3: Compile CLARAty Code
To compile a new or modified sandbox, call “gmake all” from the sandbox directory.
This copies source code for work modules into the sandbox’s src directory, creates links
to source code for link modules in the src-links directory, creates links to headers and
libraries in the include and lib directories, and compiles libraries and executables for all
work modules. You can make specific pieces by calling “gmake bins”, “gmake links”,
etc. Call “gmake help” in your sandbox directory for details. To recompile just one work
module, you can use “ymk all”, “ymk bins”, etc., from inside a src/<modulename>
directory.

By default, compiling makes libraries and executables for the architecture and OS on
which you are compiling. However, you can cross compile for any target (combo of
architecture and OS) named in your sandbox’ lib directory. For a non-rover target, you
can cross-compile by specifying “YAM_TARGET = <targetname>” in gmake or ymk or
by calling “setenv YAM_TARGET <targetname>” at the command line.

To cross compile for a rover, issue a rover command (such as “rocky8” or “fido”) at the
command line before compiling. Each command defines the proper YAM_TARGET,
cross compiler, and Tornado environment variables for the named rover. Some rover-
related modules use the Tornado variables in the Makefiles, so compiling will fail
(without a good explanation) if you have not called a rover command. I do not know
how to tell CLARAty to revert to compiling for your local system after you have called a
rover command, but you could try undefining YAM_TARGET. Sourcing SOURCEME-
CLARAty-jpl at setup creates the rover commands. Call “alias | grep YAM_TARGET”
for a list of these commands.

2.4 Adding Code to CLARAty
If you develop in unix/linux, or if you port code back from a PC, you will want to create
your own CLARAty module. Here are the steps to follow.

• Choose a module name. While developing code, a good module name is
user_<your-telerobotics-username>. This name indicates work in progress and
makes it easy to recognize the module’s author. If you have finished developing
and want to return your code to the repository, choose a more descriptive name.
For example, if your module detects water, call it water_detector. People will
find your module in the module database by entering key words, so choose the
most obvious key words for the name.

If you make a module with a lame name, or you make user_something that is not
your actual user name, somebody will send mail asking you to rename the
module. You can’t rename it or delete it yourself, so you have to track down one
of only a couple people who can, and they are always busy, so you’ll have this
action item hanging over you until you die. So just don’t go there.

Doc 8.2 d2, p.6

• Create a module. Once you have a name, call “yam mkmodule <modulename>,”
from any directory, to create a module in the CLARAty repository. The
command brings up a Readme file where you record what the module does and
what other modules it depends on. You can edit the Readme later in case you
don’t know the dependency modules off hand. After quitting the editor, you’ll
probably want to check the module out into your sandbox, as described in section
2.2, probably as a work module.

• Add code to your module. A newly created module has sample.h, sample.cc,

and test_sample.cc. Replace these with your own code, but keep the general
format: *.cc for library functions, test_*.cc to test those functions and provide
usage examples, and *.h to export the functions and data structures. When you
add your own code, modify appropriate lines in the module’s Makefile.yam to
show: which *.cc files compile into bins and which into the module’s single lib
file; what other modules’ libs must link into yours; and which header files need to
be copied into the sandbox’ include directory. A good rule of thumb is to copy
any such lines from the Makefile.yams of modules that you grabbed using, “yam
config –add.”

• Compile your code. See section 2.3.

• Check your module into the repository. Being a world class programmer, you

are happy to provide your code to other, less capable vision researchers by placing
it in the repository. To do it right, you compile and test the code on all targets
supported by CLARAty, use CVS to merge your changes with other versions that
other people were working on at the same time, potentially do something to
restrict access to JPL, and then release the module. I’ve not done this yet, the
procedure is probably going to change soon, and in any case I think it qualifies as
beyond scope for an introduction to CLARAty. If you want more information,
visit http://claraty.jpl.nasa.gov/new_site/software/how_to/index.html. Or, if you
want/need to release something, ask a developer for help (see section 1.)

Doc 8.2 d2, p.7

3. CLARAty Vision Data Structures
CLARAty provides standard vision-related data structures. These are almost all in the
form of C++ classes, typically providing getters, setters, I/O, and arithmetic. The larger
structures, such as images, may not include large operators such as file I/O or convolution
– these would appear in section 4. I have somewhat arbitrarily divided CLARAty vision-
related data structures into these groups: linear algebra, frames, cameras, images,
parameterized shapes, 2D grids, miscellany, and non-vision structures that you might
want to know about. The following sections give the classes relevant to each group.
Within the sections, each bullet gives a class name, the module and file where the class is
defined, and an overview of the data and functions in the class. For a quick overview,
just skim through and look at the boldface titles. For more detailed API documentation,
see http://claraty.jpl.nasa.gov/vision/auto/docs/html_vision. If that documentation is out
of date, contact maxb@telerobotics.jpl.nasa.gov.

Here are a few additional notes, included for completeness. You should probably skip
them and jump to the next section.

• Many modules define member io() or global io_object(), often in a file
<classname>_io.h. These use a mechanism called FDM (flexible data
marshalling) to do data structure I/O. The mechanism is defined in the non-
computer-vision, Data_io module, which is documented in an appendix. You
can pretty safely ignore it, as I generally do in the explanations below.

• Data structure modules often contain template files, which instantiate the data

structures with various template types. I remember that this is necessary because
sometimes C++ forgets to instantiate some templated types that your code uses.
However, I instantiate my own template if an instance is missing, so I do not use
the template files, and I have not documented them.

• I refer to sub-sampling methods as averaging or decimating, translating roughly

to bilinear or nearest neighbor interpolation, respectively. This is an improper
use of the word decimation, but I use it (under protest) because it seems to be the
most commonly accepted term.

Doc 8.2 d2, p.8

3.1 Linear Algebra
Linear algebra is about points, vectors and matrices. CLARAty has a number of
specialized versions of each. Most take a template parameter for the data type of their
elements. Most have functions to print their data to an output stream, though I do not
repeat that in each blurb.

• Point (points – point_t.h) is a 3-vector, useful for storing a point or a ray.
Constructors copy another point or 0-3 scalars (x,y,z). Setters set x, y, z,
individually or all at once, or x,y at once. Can access elements as x,y,z or as
vector entries. Can multiply or divide by a scalar. Can add, subtract, dot, cross,
find-scalar-distance-to, or check-equality-with another point. Can get magnitude.
Getters/setters can convert between spherical coordinates (azimuth, elevation,
radius.) Dpoint is just a Point<double> and FPoint (util_open_gl – gl_object.h)
is a Point<float>.

• Point_2D (points – point_2d_t.h) is a 2-vector, suitable for image coordinates.

Can construct with x or x,y. Can get x or y, or get by array index. Can add or
subtract another point and multiply or divide by a scalar. Can test equality of two
points. Can compute vector length or length squared, normalize the vector, or
compute a unit vector. Given a second point, can compute distance, distance
squared, dot product, or a point a given fraction of the way to the second point.
Can compute angle (about origin) from x axis or a second point, or rotate the
vector by an angle about the origin or a second point. Can compute distance to a
ray-from-the-origin or to the nearest point on a line segment. Dpoint_2D and
IPoint_2D are just Point_2D<double> and Point_2D<int>. Grid_map_point
(map_grid – grid_map_point.h) is a Point_2D.

• Array_2D (arrays – arrays.h) is a 2D array, recording width, height, and a list of

elements stored in row-major order. Elements may be a non-mathematical type.
The array can be a sub-array in a wider memory block. To support sub-arrays, the
array also records width, height, and first element pointer of the parent array, a
bool saying whether the array is a sub-array, and a counter to track how many
arrays and sub-arrays depend on the same memory block. To support fast
indexing, Array_2D records a 1D array of pointers to the first element of each
row of data. Construct to 0-by-0 size, or pass dimensions (and optional scalar,
pointer, or iterator from which to copy data), an Array_2d to copy, a parent
array_2d and sub-array coordinates. Fill by assigning another array or a scalar,
accessing individual elements with operator(r,c) or an IPoint_2D, or using a
function to fill diagonal elements of a square matrix from a pointer or iterator.
Getters provide array or parent dimensions, a row pointer, a copy of a row or
column, or an iterator to the first or last array elements or to any column.
Additional functions transpose, resize, check equality with another array, or write
to a stream. Functions for sub-arrays move or resize the sub-array within the
parent (without changing data), copy the sub-array out of the parent, or check
whether an array is a sub-array. DArray_2D is just an Array_2D<double>.

Doc 8.2 d2, p.9

My tests suggest that array iterators (arrays – array_iterators.h), which are the
most C++ way to index through arrays, are also very slow. If you need to step
through an array quickly, it seems better to make a child class that uses protected
Array_2D functions to either access the beginning-of-memory pointer or access
an element with single, autoincrementing index.

• Array_1D (arrays – arrays.h) is a child of Array_2D with only 1 row. It inherits

all functionality, but you can also index an element with only one coordinate.
DArray_1D is just an Array_1D<double>. Arraysum() (analysis_edge – sky.cc)
returns sum of elements of Array_1D. Avevar() (analysis_edge – sky.cc) is an
inefficient mean-and-variance calculator for an Array_1D.

• Matrix (matrices – matrix_t.h) is a child of Array_2D that assumes a

mathematical element type and defines math functions. Can construct from no
params (0-by-0 size), dimensions (copy data from optional pointer, iterator,
column vectors, or scalar), another matrix with optional sub-matrix coordinates,
or one dimension and an “identity matrix” tag. Can assign another matrix or copy
an array of column vectors. Can add, subtract, multiply or divide each element by
either a scalar or the corresponding elements of a second matrix. Can transpose,
transpose-and-multiply by another matrix, copy a column out to a vector, or get
the minimum, maximum, or average of matrix elements. Can return a matrix with
the absolute value of each element in the original matrix. Can convert a matrix of
any type to a matrix<float>. Can concatenate two matrices side-by-side or top-to-
bottom. A DMatrix is just a Matrix<double>.

Several non-member matrix functions are defined. Cholesky decomposition and
back-substitution (matrices – matrix_cholesky.h) solve AX=B for X, for
symmetric, positive definite A. Inverse (matrices – matrix_inverse.h) uses
numerical recipes LU decomposition and back-substitution for the general matrix,
or closed form for a 2x2 Matrix_NxM. Output has element type M_FLOAT,
which is defined as double in matrix_t.h. SVD and pseudoinverse (matrices –
matrix_svd.h) seem to be from Numerical Recipes. Matrix operators in (matrices
– matrix_operators.h) add, subtract, multiply, or divide a matrix by a double or a
scalar of the same data type as the matrix, modifying the matrix in place.

• Vector (matrices – matrix_t.h) is a child of Matrix with only 1 row. It generally

inherits all matrix functionality. Can typecast a 1D to 3D Vector to a Point or
construct a 3-vector by passing a Point. Can assign, resize, dot or cross with
another vector, access elements using array indexing, and get magnitude,
minimum value, or maximum value. Additional, non-member functions (matrices
– matrix_operators.h) let you dot, cross, get magnitude, get sum of elements.
DVector is just a Vector<double>.

• Matrix_NxM (matrices – matrix_nxm.h) is a child of Matrix with statically

allocated data space and dimensions N and M given by template parameters. It

Doc 8.2 d2, p.10

cannot be a sub-matrix. Presumably it is faster than a regular Matrix. Construct
with no params or copy from column vectors, scalar, data pointer, iterator, Matrix,
Matrix_NxM, or Array_2D. Can assign from another Matrix_NxM. Can access
elements by (r,c) coords. Can resize, calculate transpose, or transpose in place.

• RMatrix (matrices – rotation_matrix.h) is a 3x3 rotation matrix streamlined to

take advantage of the size and orthogonality. It inherits a 3x3 array from base
class Base_RMatrix (same file, used only here.) Construct from another
RMatrix, a Base_RMatrix, a 3x3 Matrix, three column Vectors, 1-3 rotation
angles, or no parameters (zero matrix – not a valid rotation matrix). If you have
row vectors, construct as if they were column vectors and then transpose. Can
copy from static Identity or Zero matrices. Can access elements with (r,c) coords.
Can transpose or invert (same operation), subtract another RMatrix, multiply two
RMatrices or multiply an RMatrix onto a Point. Can cast to Matrix or
Matrix_NxM. Can extract roll, pitch, and yaw angles.

• UnitVector (matrices – unit_vector_t.h) is an array of 3 statically allocated

elements. It is probably faster than a regular vector. Construct from no params
(0,0,0) or construct/copy from three values or a Vector (the values are normalized
before assignment). Can typecast to a Vector or a Point. Can add, subtract, dot,
or cross two UnitVectors. Can access using array index or as x,y,z. This class is
probably obsolete. It appears to be a primitive version of Point.

• Htrans (transforms – htrans_t.h) is a homogeneous 3d transform: a rotation

matrix plus translation vector. Constructor, setters, and getters can use rotation
matrix, fixed angles, or “DH parameters”. Can get transform or translation to
another HTrans. Can invert transform. Can premultiply onto another transform,
a 3d point, a roll angle, etc. Location (transforms – htrans_t.h) is just an
HTrans<double>.

• Quaternion (transforms – quaternion_t.h). Construct from axis/angle, a matrix, 4

scalars, a quaternion, or 3 angles. Convert to/from 3 angles, from axis/angle, to
angle, to/from rotation matrix. Interpolate toward another quaternion. Negate,
conjugate, raise to a power, scale by scalar, sign flip so last element is positive,
normalize to unit quaternion, get norm, quaternion multiply, divide, =, ==.

• Float_matrix (jplpic – FloatMatrix.h) and (camera_model_jpl – float_matrix.h)

are redundant with each other and the other CLARAty matrices. Its functionality
should be assimilated and its references in the JPLPic code replaced.

• More Matrices and vectors (jplpic – Mat3.h) and (camera_model_jpl –

img_mat3_pub.h). These are matrix and vector routines specialized for 3x3
matrices. The two sets of code are redundant. Consider a specialized matrix class
similar to rotation matrix, just for 3x3 matrices.

Doc 8.2 d2, p.11

3.2 Frames (a.k.a Kinematic Chains)
Robotics applications involving articulated arms may assign a reference frame to each
link in the arm and record the coordinate transforms between adjacent links. Adjacent
transforms can be concatenated to create a coordinate transform between any pair of
reference frames on the arm. CLARAty stores these “kinematic chains” of transforms
using the Frame class. The Frame class appears in various parts of the vision code, so
even if you expect to do pure vision, you should still learn about Frames.

Continuing the example, a Frame represents the coordinate system of one link. It has a
pointer to an adjacent, “parent” link and a coordinate transform to that link. It also has
pointers to “child” and “sibling” links, so that you can build a kinematic tree, not just a
chain. It provides functions to quickly convert coordinates between any pair of Frames
in the tree. The Frames of a tree can be collected and stored in a Framestore, which can
lock the entire tree as you modify one node, to be safe in a multithreaded environment.
When using Framestores, you do not access the Frames directly. Instead, you extract a
Frame_l, which records a Frame and its associated Framestore.

• Frame (frame – frame.h) is one node in a kinematic tree. It has a name string,

pointers to parent, first child, and next sibling Frames, and a Location
(homogeneous transform relative to a parent.) Getters access all of these except
the Location, which is public. Construct with a name, optional parent (else create
a root) and optional Location (else identity.) Destructing a Frame reparents its
children. Member function location_of() extracts the transform to any other
Frame in the tree and optionally applies it to a parameter Location. Additional
functions: copy from a Location or Frame; get a common ancestor with another
Frame; see if a parameter Frame is an ancestor; set the Location with respect to
parent or a parameter Frame; reparent to a Frame in same tree; see if the Frame is
a root (perhaps unsafe); and print self or children in Parse_Block format.
Frame_h (frame – frame.h) is a pointer to a Frame plus a complete set of pass-
thru functions with default return values in case the pointer is unassigned.
Construct empty or pass a Frame pointer. It is not clear what value this class
adds.

• Frame_l (frame – lock_frame.h) is a pointer to a Frame and a pointer to the

Framestore that contains the Frame. Frame_l has the same interface as Frame
(using pass through functions), except for the following. Most Frame_ls are
constructed by Framestore’s member functions, but you can also construct by
copying another Frame_l, passing a Framestore (no Frame), or passing nothing.
Member functions handle Frame_ls, not Frames, and they short circuit if any
parameter Frame_ls are not in the same Framestore. You can assign a Frame_l
from a Location, but not from a Frame. Frame_l has additional functions to: test
whether the Frame is assigned; get the Frame’s location; compare Frame_ls (==
and !=); return the Framestore; see whether another Frame_l shares the same
Framestore; and do stream I/O.

Doc 8.2 d2, p.12

• Framepair_l (frame – lock_frame.h) has two Frame_ls, to represent a primary
frame “with respect to” a secondary frame. Construct with both Frame_ls, just
the primary one, or neither (primary frame unassigned.) There are functions to
test whether the primary Frame is assigned, get the transform from primary to
secondary, or get the name of either Frame or a compound with both frames’
names. The two Frame_ls are public, so all Frame_l functions apply as well. It
is not immediately clear what value this class adds.

• Frame_Data (frame – lock_frame.h) has a Frame name, a parent name, a

transform, and the name of the frame that the transform references. Construct
from a Frame_l (no reference frame), a Framepair_l (frame plus reference
frame), or the four fields; or assign from a Frame_l. It is unclear why you would
want this struct except to facilitate I/O.

• Framestore (frame – lock_frame) collects one kinematic tree worth of Frames.

It records its own name string and an STL Map of frame name strings to Frame
pointers. A Frame in a Framestore can only have relatives in the same
Framestore. A Framestore cannot have multiple frames with the same name.
Construct a Framestore empty, with only a name, or from a Parse_Block. The
Parse_Block has one entry with label “name” (the Framestore name) and other
entries whose labels are non-negative integers and whose values are parse blocks
that each define on Frame. Labels need not be in order, but a missing integer
stops the parsing. Non-integer labels are ignored. Framestore defines functions
to: create or modify a member Frame (from optional name, parent name, and
location, or with info in a Frame_Data); lookup a Frame_l by name string, and
optionally copy it into a Frame_Data; remove a Frame given its Frame_l; copy
the Framestore; merge in the entries of another Framestore; get a list of Frame_l
for all Frames in the Framestore or all ancestors of a parameter Frame; convert a
list of Framepair_l into a list of transforms between each pair (does that really
belong here?); and print the Framestore contents to screen or Parse_Block.
Virtual functions to lock and unlock the Framestore, to make its operations
threadsafe, do nothing by default. Framestore_pthread (frame –
lock_frame_pthread.h) is a child of Framestore that defines the lock and unlock
functions to use a pthread_mutex, making the class thread safe.

Doc 8.2 d2, p.13

3.3 Cameras
As of this writing, a camera is implemented with three classes. Class Camera, which
your code would actually handle, is a wrapper (pointer + pass-through functions) for a
Camera_impl. Class Camera_impl contains a list of standard camera parameters, virtual
setters and getters, and image-acquire functions. One class Camera_impl_<type> for
each specific type of camera inherits Camera_impl and overwrites functions, for instance
to initialize the list of camera parameters. These classes try to add camera-specific
functions only within the existing camera_impl interface. A parallel set of classes
(Multi_camera, Multi_camera_impl, and Multi_camera_impl_*) describe array of
cameras that could conceivably acquire images synchronously.

Why don’t we combine Camera (the wrapper) and Camera_impl (the real code)?
Because potential descendents of Camera (e.g., VideoCamera or ColorCamera), can
point to any Camera_impl_*, but descendents of Camera_impl must each have their own
set of descendent Camera_impl_*. The problem would go away if each Camera_impl_*
could only sensibly inherit from one descendent of Camera, but even in our small
example here, a color video a camera could sensibly inherit from either color or video
camera. Also, CLARAty classes such as motors require the same sort of separation, so it
seems reasonable to retain the common pattern in the vision package.

The following bullets give a slightly more detailed view of each class. For even more
details, such as a list of camera_impl_*, see
http://claraty.jpl.nasa.gov/vision/auto/docs/html_vision, and click on “acquisition”.

• Camera (camera – camera.h) is a camera_impl pointer and a camera_model

pointer. Constructor sets both, getters get either, and setter sets camera model.
Many more getters and setters are pass thrus to camera_impl. More pass-
throughs acquire 1-band or 3-band camera_image (and set their model).

• Camera_Impl (camera – camera_impl.h) is a list of features for a specific

camera. Features are of class dev_feature (camera – dev_feature.h), which has
fields such as id, value, min/max, and is_on. Camera_impl has virtual getters,
setters, and acquires (called from class Camera.) Getters and setters access the
list of features, while acquires are null – this is a base class. Can construct by
copying another camera_impl.

• Camera_Impl_* (various modules and files) inherit camera_impl and redefine

virtual functions. Camera_impl_proxy (camera – camera_impl_proxy.h), which
I don’t understand, is purportedly helpful in wrapping your own cameras into
camera_impls. Sim_camera_impl (camera – sim_camera_impl.h) is a simulated
camera that “acquires” 4x3 images of constant intensity.

• Multi_Camera (camera – multi_camera.h) is the same as a Camera except that it
has a pointer to an array of camera_models and a pointer to a multi_camera_impl.
Construct by passing a multi_camera_impl or an array of camera_impls. The

Doc 8.2 d2, p.14

number of cameras is a template parameter. The getters, setters, and 1-band
acquire all take a camera_num parameter, so you can access one camera at a time.
There is no 3-band acquire, but you can pass an array of images and have one call
acquire with all cameras. The multi_camera_impl decides whether the cameras
are synchronized. Setters and getters (except for multi_camera_impl and
camera_model) are pass-throughs to the multi_camera_impl.

• Multi_Camera_Impl (camera – multi_camera_impl.h) is an array of

camera_impls, plus setters, getters, and acquires to access the camera_impls.
These functions have the same names as those in the individual camera_impls and
in class multi_camera. The multi-image acquire() function does not synchronize
the acquisition of the camera_impls.

• Multi_Impl_* (various modules and files) are child classes of

multi_camera_impl that retain the same interface but redefine the setters and
getters.

• Camera_Model (camera_model – camera_model.h) has image height and width,

two fields to identify the camera’s Frame, and getters and setters for these fields.
It defines virtual functions to convert between pixel coordinates, lens-distorted
pixel coordinates, and vectors from camera pinhole through pixel. It also defines
confusing functions for file and stream io and factories.

• Camera_Model_* (various places) are specific camera models. They add

parameters with getters and setters and redefine the virtual functions for pixel
conversion, construction, and I/O. Camera_model_matrix (camera_model –
camera_model_matrix.h) looks like a Tsai camera matrix and a 4-parameter
distortion vector. It also has a subsample() command that just modifies the
camera model. Camera_model_jpl (camera_model_jpl – camera_model_jpl.h)
has a JPLCamera pointer and I/O functions for handling CAHV and CAHVOR
files. Most of its functions are pass-throughs to the JPLCamera.

• CameraModel (camera_model_jpl – Camera.h, jpl_cmod.h.) It looks like

somebody tried to split JPLCamera into two parts, along the lines of
Camera_Model and Camera_Model_JPL, gave up, and did not delete the code.
Camera_Model is currently a rather hollow parent of JPLCamera, and other tha
that is never used in its own right. It should probably go away.

• JPLCamera (camera_model_jpl – Camera.h, jpl_cmod.h) stores the vectors,

scalars and matrices found in a CAHVORE, CAHVOR, or CAHV file, plus the
image dimensions that may or may not appear in such a file. These parameters
constitute a camera model. JPLCamera has functions to: test for near equivalence
with another model; scale/rotate/translate the model; rotate the model to
parameter axes; and rotate/translate the model and another “rigidly attached”
JPLCamera to put the local model at a specified pose and maintain the
relationship between the two cameras. JPLCamera has I/O functions to:

Doc 8.2 d2, p.15

read/write files; read from another JPLCamera, a memory block, or various
combinations of parameters; and print the CAHV(ORE) vectors, the derived
parameters, a one-line check for common errors, or the camera position and
“axes” (purportedly different from A, H’, V’).

JPLCamera has functions to extract information from the model: camera axes;
projection, rotation, and translation matrices; horizontal, vertical, and diagonal
FOVs; and 2D-to-3D or 3D-to-2D projection matrices. It has functions that use
the model to: find the 3D ray through a pixel or the pixel intercepted by a ray, find
the angle between rays through two pixels, and find a projection matrix between
two CAHV cameras, which might mean the fundamental matrix. Converting
between rays and pixels is done by jpl_cmod_cahv*(), described below.

JPLCamera has at least four functions to rectify images from CAHVORE (and
sometimes CAHV) to CAHV, generally creating and using a lookup table to map
warped to unwarped coordinates. Nothing appears rectify from CAHVOR, except
one function that uses a rectification table that cannot be created because the table
generator function is #if 0’d out. Member variable rectification_tables is a
NamedCache (camera_model_jpl – NamedCaches.h), meaning that it has some
chance of persisting in memory while you are not using it. A member function
finds the old table or allocates new memory that can be refilled using st_warp*()
functions. A second member variable, rectificationTable, appears to be vestigial.
Locally defined struct RectMapKey (camera_model_jpl – Camera.h) contains
header information for the warped and unwarped. Global methods (should be
members) test if 2 RectMapKeys are mostly equal and write one’s contents as a
string. The struct is only used to assemble a name for rectification_tables, which
is why it appears here rather than with the st_warp*() functions.

JPLCamera uses a MemoryManager to safely handle memory.

CameraModel and JPLCamera functions return NavErr, which is a little silly
because nothing in the module defines NavErr. Presumably it is defined in a
client application. More sensible would be to have the module define its own
errors, and let the client copy them. There are probably other sensible options.

• CAHV(OR(E)) handlers: img_cmod_cahv*() (jplpic – img_cmod_pub.h) and

(jplcamera – img_cmod*.c) do various things with CAHV, CAHVOR, and
CAHVORE models (abbreviated CAHV(OR(E)).) They should be part of the
JPLCamera class, but they are legacy code, and have not been incorporated.
Instead, they use separate parameters to handle the CAHV(OR(E)) vectors, the
covariance matrix (S) between the vectors, derived quantities (hs,hc,vs,vc,theta),
and the covariance (s_int) between them. There are functions that …

o Read/write CAHV(OR(E)) files.
o Calculate the derived parameters, camera orientation (as rotation matrix), or

camera position plus orientation, all from the CAHV vectors.

Doc 8.2 d2, p.16

o Use a CAHV(OR(E)) model to convert a pixel’s 2D coordinates into a 3D ray,
or vice versa, or find the 2D coordinates of the vanishing point of a ray. Each
also can calculate the partial derivatives of the 2D/3D transform.

o Convert a pixel’s 2D coordinates into a ray with one camera model and then
back to 2D with a second model. There are variants to convert between two
models of the same type (e.g. CAHVOR) and others to convert between
CAHV and either of the other two models.

o Find the new values of CAHV(OR(E)) and S (the covariance of these vectors)
if the camera’s reference frame translates or rotates, the image is shifted or
scaled, or the camera is reflected off a mirror plane. For the case of shifted
image, the three model variants are identical. For scaled image, the variants
differ only in the size of S.

o Take two similar CAHV(OR(E)) models, representing a stereo pair, and
generate CAHV parameters for a rectified stereo pair (CAHV or CAHVORE)
that has the same pinhole positions, about the same field of view, and a stereo
baseline nearly aligned to the image horizontal axis.

o Find a CAHV model similar to an input CAHVOR(E) model but with
orthonormal A,H’,V’, and with hc/vc/hs/vs covering the CAHVOR(E)
model’s FOV without distortion

The three img_cmod_cahv*.c files define static cmod_read_scanstr(), which
probably ought to be declared just once.

It seems silly to pass all of the parameters to all of the functions, rather than
having a CAHV object that can operate on members and perhaps be inherited to
make CAHVOR or CAHVORE classes. In fact, it appears that class ImgCMod
stores all of these parameters and is used by img_cmod_*() functions defined in
img_cmod.c, which are similar to img_cmod_cahv*() but handle all three
CAHV(OR(E)) models. I do not know where the class is defined or what header
file declares these generic functions.

There are two sets of synonyms for these functions. They are jpl_cmod_cahv*()
(jplpic – jpl_cmod.h) and cmod_cahv*() (jplpic –img_cmod_pub.h), which are
#defined to img_cmod_cahv*() in said header files. I do not know why we use all
of this #defining. Both headers are improperly placed in Jplpic. I say improperly
because they relate to a camera model, not to an image format, and because jplpic
does not call the functions. They are called in the camera_model_jpl module.

The two header files, in the JPLPic module, #define some constants
(IMG_CMOD_MAX_FILE_BYTES, PI and FAILURE) that are unused, and
another (EPSILON) that conflicts with definitions elsewhere. The headers define
TRUE, FALSE, and SUCCESS, the latter being a return value that (jplpic –
filename.c) expects for functions in a FormatTagT struct. Viscommon.h defines
TRUE, FALSE, SUCCESS, and FAILURE, without all of the extra complication,
and should probably replace the #inclusion of the two header files in stereo.h and
image_parse.h. Then the two header files could move to camera_model_jpl,

Doc 8.2 d2, p.17

where they belong. Also, note that jplpic does not actually need stereo.c. Finally,
consider replacing viscommon.h with the CLARAty equivalent.

Finally, (camera_model_jpl -- jpl_cmod_cahv.h and .cc and mat3.h)
declare/define a few extra jpl_cmod_cahv* but they are used.

Doc 8.2 d2, p.18

3.4 Images
We define the basic Image structure and have other structures that inherit or use it.
Image and its children have screen I/O routines, but I do not discuss them. We also
support third-party JPLPic and ATImage, which are not based on Image. Although
undesirable, we support the third party formats (and provide converters) so that we can
drop-in-replace code to support third party upgrades. It might be good to add a class that
just has dimensions and a data pointer, which would be useful for very simple third party
applications that do not want any overhead in their Image struct. It would be really good
if JPLPic’s operators could be separated out from the main data structure, as upgrades to
the operators would not then affect the main structure, and we could conceivably merge
the Image (or Matrix or Array_2D) and JPLPic classes.

• Image (image – image.h) is a Matrix that also supports interpolation to extract
values at non-integer coordinates. Construct empty, or give dims and optional
initializer (scalar, data pointer, or iterator), or another Image or Array_2D to copy,
or an Image and sub-image bounds to create a sub-image in another Image. Image
inherits all functions from Matrix and Array_2D, including accessing with
operator(r,c) or operator(point_2d); moving, resizing, or extracting a sub-image;
copying a matrix, an array column Vectors, or a scalar; adding, subtracting,
multiplying or dividing each element by either a scalar or the corresponding
elements of a second matrix; transposing, transpose-and-multiplying by another
matrix, copying a column out to a vector, or getting the minimum, maximum, or
average of matrix elements; converting to a matrix<float>; copying a row or
column or getting a pointer to a row; and resizing the image. In addition, you can
switch interpolation between BILINEAR (average of 4-neighbors weighted by
their contribution to pixel area) and NOINTERP (truncate coordinates – the
default). It would make sense to have nearest neighbor interpolation (add 0.5
before truncating.) A second BILINEAR option (weighted average of 4-
neighbors based on Euclidean distance to pixel center) may not appear in the
current version. Can access interpolated pixels using “pixel(x,y)”, which is the
only function where the column coordinate precedes the row coordinate. Can get
a pointer to the beginning of the image, in case you need to rapidly cycle through
the image elements. GetImageWin() (analysis_edge – sky.cc) copies a rectangle
of an Image into an Array_1D.

• RGB_Image (image_rgb – rgb_image.h) has three Images and several functions

to access them. Construct empty, pass dims to create empty images, or pass 3
images to copy. Function get_color(x,y) returns an RGB_Color, which is 3
values of the RGB_Image’s data type. Setters take x,y,r,g,b or x,y,RGB_Color.
Get and set image dimensions of the RGB_Image rather than the bands. Can get
iterators or pointers to each band. Can convert to/from an array of rgb triplets.

• Camera_Image (camera_image – camera_image.h) is an image that also has a

Camera_Model pointer, a time stamp, and a frame number. Constructs like an
image except that you can also pass various combinations of camera model, time

Doc 8.2 d2, p.19

stamp, and frame number. Has pass-through functions to the camera_model to
attach the camera_model to a framestore or get the camera’s frame.

• Point_Image (point_image – point_image.h) is a Camera_Image where each

element is a Point<double>, representing a 3D point as seen by a camera. It also
has a mask array (bool, to say which pixels are valid) and a confidence array
(float), a reference frame (need not be the same as the camera’s), another
parameter dealing with frames, and a distance “infinity” giving the maximum
depth of the points. Construct with optional image dimensions, reference frame,
and filler value. Constructors and public function rebuild() build a Point_Image
from a reference frame, two camera models, a horizontal disparity map, and
optionally a vertical disparity map and/or corresponding mask. That disparity
map is Ames-style – the JPLStereo disparity maps differ by several scaling
factors including a cross product that differs for each pixel, so there is no ready
conversion. The conversion of disparity map to 3D image belongs with camera
model, not in Point_Image. There is also a function to find the 3D point for one
pixel. Reference frames for the point_image and the two cameras must all be in
the same framestore and all be related through some inheritance there, otherwise
the location_of() commands in rebuild() will fail. In addition, if you use
CAHVOR cameras, even though you can’t use a JPL stereo disparity map, you
must set the cameras’ reference frame to match the CAHVOR parameters. There
is a pass-through to attach the image to a framestore. There are functions to
extract the points that satisfy a predicate, clear the mask pixels for points that fail
a predicate, convert to a point cloud, “decimate” by an integer factor, or transform
all points by a Location or Frame_l. The same file has BoundingBox, a class
with one function that determines whether a Point lies within an axis-aligned
bounding box.

• Normal_Image (point_image – normal_image.h) is essentially a point_image,

except that its base data type is Unit_Vector rather than Point. It is used to
represent surface normals rather than locations. It has parallel Array_2Ds to store
residual and residual_ratio, two additional measures of confidence in the
associated surface normal. Function build_from_point_image() fits a plane to a
square neighborhood around each point in a point_image and records its normal at
the corresponding point in the normal image. Mathematically, it subtracts the
center point’s coordinates from each neighborhood point, builds the covariance
matrix of the resulting cloud, does an SVD, and uses the minimum eigenvector as
the normal. This idea is sound, but I’m pretty sure you have to subtract the
average of the point cloud, not the center point, to be mathematically correct. In
addition to the normal at each point_image patch, the function records the
smallest eigenvalue as the residual, the ratio of smallest eigenvalue to middle
eigenvalue as the residual ratio, and the square of “1 - residual ratio” as the
confidence. Points whose neighborhoods are not fully on the point_image or have
more than half of their points with 0 as their mask value receive a 0 in the
normal_image mask and receive no normal entry. Normal_image also has a fast,
less robust function that calculates normals by crossing vectors between each

Doc 8.2 d2, p.20

point_image point and two of its neighbors. The file also has a BoundingBox
class with a function to tell whether a unit vector is in the axis-aligned bounding
box described by two member unit vectors.

• Image_Pyramid (image_pyramid – image_pyramid.h) is an array of Images and

an integer dimension for the array. Each image after image[0] is a half-sized
(rounded down) version of the previous image, created by convolving a
smoothing filter at every other pixel of every other row in the previous image and
extracting those pixels. Generate the pyramid by calling create_pyramid() or a
constructor and passing image[0], an optional number of pyramid levels
(default=3), and an optional smoothing filter or filter size. If you pass a filter size,
create_pyramid() will skip convolution (size 1) or generate filters (sizes 2, 3, or
5.) Coordinates (x,y) in one image correspond to (2x,2y) in the next larger image
if you use an odd-sized filter or (2x-½ , 2y-½) if you use an even-sized filter. For
“border” pixels within half a filter-width of the input image border, convolution
crops the filter to fit on the image and rescales it to the same gain as the full filter.

• Point_cloud (Point_cloud – point_cloud.h) is an Array_1d<Point> with an

additional variable giving the number of points being used. The constructor sets
the number of points to 0 and can specify the maximum number of points (default
= 320*240). Unlike a Point_Image, there is no implied order to the points, and no
mask array to indicate invalid points. There are functions to transform the cloud
by a Location, delete all points, add a point (unsafe), append the points from
another point_cloud, and change the allocated size of the array (unsafe.) It also
inherits all functionality of Array_1d, which are mainly getters for array pointer
and allocated size, and index notation to access particular members.

• ATImage (arc_slog_tracker – atimage.h) is an image format that packs data.

Members are dimensions, data pointer (data is packed into long ints), bits per
pixel, number of long ints required to store data, and number of extra pixels to
reserve on each (left and right) border. Most members have getters. Construct to
an empty image, or pass values for all members, or pass all but the image data, or
pass another ATImage or an Image. Has separate Init functions to allocate and
pack data, but may call them from the constructors. Has a separate function to
allocate space for the data, so you can safely allocate after the constructor.
Defines assignment, add-image, subtract-image, and multiply-by-constant
operators. Has functions to convert to/from an Image, read/write a PGM file,
write an Inventor file, and write image data bit-by-bit to screen or byte-by-byte to
a file. Seems silly to duplicate the CLARAty Image format. Why do we?

• JPLPic (JPLPic – JPLPic.h) is the image format used for many applications in the

Machine Vision group. It currently is divided among a header file and seven cc
files for basic functionality, drawing, file-I/O, regular image operations, large-
buffer image operations, colormap handling, and using the image as a map. Basic
structure and function (mainly from JPLPic.cc) is described here. Functionality
that looks more like operators and less like structure is described in other sections.

Doc 8.2 d2, p.21

Drawing, file I/O, colormaps, and filtering are separate conceptual entities that
warrant their own modules. Such modules could have a JPLPic pointer to tie an
instance to a particular JPLPic, but their presence would not clutter JPLPic in
applications that do not require them.

JPLPic records a basic image as number of rows, number of columns, and a char
pointer. It accommodates different pixel data types with an enum PixelType of all
standard data types, a member variable to record the JPLPic’s pixel type, and the
use of AnythingT (JPLPic – JPLPic.h), a union of all standard data types, in
member functions. There are also member functions to get bytes-per-pixel and
bands-per-pixel for arbitrary pixel type or the image’s pixel type, functions to
convert between pixel type enum value and description string, and some macros
to test things about a pixel type, such as whether it is a scalar or vector. The
macros should probably be inline member functions. According to notes in the
code, JPLPic uses cumbersome AnythingT instead of elegant templates because
flight code cannot use templates and because some code must operate on multiple
images of differing pixel types. CLARAty is not flight code, but if CLARAty is
to incorporate the latest version of Machine Vision group products, and those are
built as flight code, then we must work with their restrictions.

JPLPic accommodates sub-images by recording the number of bytes between the
beginning of successive rows and recording whether the JPLPic owns its own
pixel memory. There is no count to know when image data memory is no longer
used. Instead, one image owns the data, which seems less robust.

JPLPic uses weak constructors that set non-allocated variables and has Init()
allocate/fill the remaining members, which is safer than the way Image does it.

JPLPic supports images composed of two fields stored as consecutive blocks. A
member variable tells whether the image is divided into fields. File-I/O and
sliding-sum image operators take this variable into account, though I’m not sure
that drawing or regular filter operators do, so they may munge the edges of the
fields.

There are getters/setters for most member variables and a function to print
member variables. There are getters/setters for individual pixels, including a
getter that interpolates floating point coordinates on an 8-bit image. There are
functions to get a pointer to the image’s first pixel or the pixel at given row/col
coordinates, both with options to typecast to appropriate data type pointer and to
wrap around when row/col are outside image bounds. There is a function to set
the JPLPic’s data pointer, with appropriate housekeeping. Has function to find
the row/col of the pixel in an xyz-vector image that is nearest an input (x,y) point.
Declares but does not define a function to find the new coordinates of a pixel if
the image were to be rotated.

There are copy functions to: fill an existing JPLPic by copying a JPLPic

Doc 8.2 d2, p.22

(sub)image, a colormap entry (pic_filter.cc), or a scalar or memory block with
optionally embedded rows/cols/datatype header (pic_io.cc); create a new JPLPic
with copied header and no data; or create/modify a JPLPic to point to (not copy) a
(sub)image in a memory block (pic_io.cc) or another JPLPic, create an ARGB
image from separate bands stored as char * or JPLPics; and create two JPLPics
pointing to the two fields of an existing image.

There are locally defined macros to check if a number is in bounds, take absolute
value, choose minimum or maximum, etc., which should be replaced with cl_*().

JPLPic accommodates color-indexed images using its own colormap, which it
represents with four member variables. The first two are a statically allocated
array of (#defined) default colormap size and a pointer that can be allocated to a
larger size. The third is a pointer to whichever of the first two is active. The
fourth is a vestigial member that is always null. One file (jplpic – jplpic.h,
pic_cmap.cc) has colormap handling functions that: allocate the large colormap;
copy entries from another colormap; load a greyscale, color-scale, or hard-coded,
rainbow color map; print the color map; set/get one colormap entry; and convert
an image from colormap indexed to RGB. Another file (jplpic – cmap.h) has 5,
vestigial functions for dealing with color maps. One fills params rmap[], gmap[],
and bmap[] the 256 colors made from 8 values of red, 8 values of green, and 4
values of blue. Another converts red, green, and blue values (0-7,0-7,0-3) to the
index of that color on the above maps. Another converts images of 8-bit red,
green, and blue values to an image of index values. These first three functions
assume that bits are in reversed order. The two remaining functions seem to be
copies of jplpic’s grey-scale and rainbow color map generators. I recommend that
the colormap be separated into its own module, and attached to the drawing class
and other classes that require it. I doubt that the average image requires it.

JPLPic supports using the image as a map by mapping floating-point coordinates
to row/col coordinates. Member variables (with getters and setters) record scale
and offset, strings naming the units for the float coordinates and bools to say
whether the JPLPic owns (i.e. must free) the strings. There are functions (jplpic –
jplpic.h, pic_units.cc) to scale the scale variables, resample the image to a new
scale, convert between float and row/col coordinates, and get the address of a
pixel at float coordinates as a pointer to any standard data type. The
address/coordinate getters can handle maps that wrap around. There is a function
to get the distance between two pixels after resolving wraparound in their
coordinates. There is a big function, in 3 variants, to “annotate” an image to show
the float mapping. That seems to include magnifying an the image and scaling it
to 8-bit grey, drawing a grid of specified (float) period and (float) anchor point,
drawing a special marker at coordinates (0.0,0.0) or optionally the wrapped
equivalent, and overlaying text with the float units name, offset, and scale.

A member variable records the actual number of bytes allocated to an image, so
that it need not reallocate if the image is resized to a smaller size.

Doc 8.2 d2, p.23

There are a number of statistics functions declared in jplpic.h that appear to not be
defined: ComputePixelStats, WriteStats, ExposureStats. It may be that these
existed in a former version, because my older notes describe a function to find the
mean, variance, and number of pixels below and above thresholds in a region of
the image (could overrun end of image) and a second one to write image size,
mean, and variance to a file.

JPLPic uses a MemoryManager member variable instead of standard new and
delete functions.

JPLPic files appear in the JPLPic, gestalt_navigator, and visual_odometry_jpl
modules. They may be mutually incompatible. The JPLPic files should be
removed from the latter two and replaced with links to the JPLPic module.

JPLPic.h defines two macros to detect whether a 3D point or a disparity value are
represent “no-data”. They are not used. They do not belong in this file. And they
may even fail, because the 3D point does not test against the customary no-data
value, and the value for invalid disparity is defined differently across applications.

• JPLPic_converter (jplpic – jplpic_converter.h) has two functions to convert
between a JPLPic and an Image. They are put correctly in a separate file from
JPLPic, so that Image and JPLPic needn’t know about eachother.

• Science_Image (Analysis_edge-R1-00a – Science_analysis.h) is an

Image<BYTE>. Construct empty, or with dims and an optional BYTE* to fill
data. Function mask() ANDs the image with a parameter image, setting pixels to
0 where corresponding pixels of a parameter Science_Image are zero. There are
many unused variables and declared-but-undefined functions, suggesting that the
class is unfinished.

• In_region() (analysis_edge – layeranalysis.cc) tests whether coordinates are on

an Image, which is probably redundant with something in Image.

Doc 8.2 d2, p.24

3.5 Parameterized Shapes
Here are classes to fit data to parameterized shapes and store the parameters. They
probably warrant one or more modules of their own.

• Ellipse (Analysis_edge-R1-00a – Science_analysis.h) stores the 5 parameters of
an ellipse (x,y,a,b,theta) plus size, which is used to store ellipse area. This should
probably be a class/module of its own, and the crater detection code should
probably use/improve it.

• SearchEllipseList() (Analysis_edge – Science_analysis.h) checks whether

parameter coordinates are within 1 pixel (each x and y) of any of a list of ellipses.
It checks at intervals of π/8 around the ellipse. Perhaps belongs to Ellipse.

• CreateEllipse() (analysis_edge – layeranalysis.cc) fills an Ellipse based on a list
of points. Ellipse center is the point centroid plus a parameter offset in x and y.
Ellipse size is the number of points used to calculate the ellipse. Ellipse axis
lengths are the square root of the eigenvalues of the covariance matrix for the
points, scaled so that the area of the ellipse equals the number of points. Ellipse
theta is the angle of the major axis, CCW from vertical, measured 0 to pi.
Probably should be merged with crater detection code’s fitter, and become class
Ellipse_Fit_Moments, as with Plane.

• Plane (analysis_terrain_morphin – plane.h) is a plane, parameterized as

z=Ax+By+C. Has function to calculate z given (x,y). Has function to calculate
the roll and pitch of a robot sitting on the plane with a given yaw. Has
constructors, assignment operator, and I/O operators. Has public fields for
residual (chi sq plane fit) and quality (according to N.R.C.)

• Plane_fit_moments (analysis_terrain_morphin – plane.h) has a Plane and the

functions and data required to fit the plane to a set of points. It records the
number of points, the sums used in a standard least squares fit, and some flags. It
has functions to clear the sums, add a point (with or without weight),
add/subtract/assign sums of another plane_fit_moments, compute the Plane
normal, residual (normal*covariance*normal / numpoints), and quality
(gaussianness of plane fit) from the sums, compute the mean and variance of
heights (z) of the summed points, and do I/O. Another function updates plane
normal and residual if points have been added since the last such calculation.

• Region (map_grid – region.h) is a 2D transform (2D position and an angle), with

virtual functions to set/get members, get a bounding box, test whether a point is in
the region, do I/O, and transform by an angle and offset. Many of these are set to
null to force the inheritor to define them. The class seems redundant with
Grid_Map_Origin. Circular_Region, Square_Region, and
Quadrilateral_region are children of Region with descriptive parameters (radius,
halfwidth, or corners) and overloaded functions.

Doc 8.2 d2, p.25

• Edge (Analysis_edge – Science_analysis.h) is a linked list node with vector of

Point_2D. Probably redundant with crater detection code.

3.6 2D Grids
These are not exactly computer vision structures, but to the extent that vision is used to
map the environment, you may have use for them.

• Grid_map_origin (map_grid – grid_map_origin.h, grid_map.cc) is 2D-transform
(2d position and 1D orientation) with setters, getters, constructors, and functions
to convert points and orientations between local and global coordinates. It should
perhaps be replaced with a 2D-transform class.

• Indexers (map_grid – grid_map.h, grid_map.defs.h), specifically

Standard_grid_map_indexer and Wrap_around_grid_map_indexer have
functions that take an x or y coordinate and a height or width, and return the
coordinate as-is or wrapped around the height or width. They also have a method
to scroll a Grid_Map to put indices (r,c) in bounds, though the standard indexer
just returns false.

• Grid_Map (map_grid – grid_map.h, grid_map.defs.h) is 2D grid, represented as

an Array_2D of templated data type representing map cells. The class records the
map dimensions, the width of each (square) map cell, and coordinates of a map
corner, all in 2D world coordinates. Functions convert between a 2D point or
rectangle and the array indices, corner coordinates, or center coordinates of the
enclosing cell(s). These functions can use map or world coordinates, converting
via a member Grid_map_origin. Constructors all wrap map_setup(). Additional
functions get/set member variables; get/set a cell at array indices or 2D coords;
get map bounds as coordinates; clear all cells using cells’ clear() or by filling
them with a parameter cell; get Global_iterators to step through map in x or y;
shift the map to include a point; and do stream and file I/O. Virtual
merge_maps() is declared but not defined. Requires an Indexer template type to
assign to its iterators.

One choice for templated data type is Grid_Map_Cell (map_grid – grid_map.h),
which is a base class that just defines an empty function, clear(). It is never used,
but presumably provides the minimum interface for a cell in Grid_Map. Perhaps
Grid_Map should use Grid_Map_Cell instead of a templated type.

Const_Grid_Map_Iterators and Global_Iterators (map_grid –
grid_point_iterator.h, grid_map.defs.h) march a “current position” across a
Grid_Map. Coordinate_Iterator has a 2D position and 2D step size,
constructors to set them, and overloaded add/increment operators. It uses only
map coordinates. Global_Iterator is a Coordinate_Iterator whose position and
step (but not constructor) use global coordinates. Grid_Map_Iterator_Base is a

Doc 8.2 d2, p.26

Coordinate_Iterator whose constructor (but not position and step) uses global
coordinates. It also has a function to determine the iterator bounds – the smallest
and largest number of increments that will place the iterator’s position on a
parameter, template typed, map. Grid_Map_Iterator and
Const_Grid_Map_Iterator are Grid_Map_Iterator_Bases with a member
Grid_Map pointer and functions to determine iterator bounds for the Grid_Map,
test whether it is currently in bounds, and get the “current” Grid_Map cell.

• Region_Iterator (map_grid – region_iterator.h, region_iterator.defs.h) has a

Grid_Map and a Region. It seems to be for iterating through the grid cells under a
Region. It records the bounding box of grid cells containing the region and the
array indices of, coordinates of, and pointer to, a “current” Grid_Map cell. The
constructor converts the region from global to map coordinates, determines the
grid cell bounding box, and sets the “current” cell to the top left cell in the
bounding box. The increment operator moves the “current” cell along the
bounding box in reading order until it finds a cell in the region or until it runs out
of bounding box. There are also functions to get the current cell, the bounding
box, an iterator at the top-left of the bounding box, or an iterator at the bottom left
(probably an error) of the bounding box. There are operators to test whether two
iterators have the same current cell.

• Plane_Fit_Map (analysis_terrain_morphin – plane_fit_map.h) is a Grid_Map

whose cells are Plane_Fit_Moments. It has members to describe bounding box
and clipping and a function (called by constructors) to fill them from a
Morphin_Analysis_Params. It has virtual stream and file I/O functions and
functions to write the map as a green-scale elevation map. It has a pass-through
to clear the map and functions to add a point or a point cloud to the map. This
adds the point(s) to the appropriate plane_fit_moments element(s) but does not
recalculate the plane(s) there. It does update the Plane_Fit_Map’s bounding box.
This is potentially more general than morphin, so perhaps the function to fill the
parameters from morphin_analysis_params belongs with the latter.

• Plane_Fit_Overlapping_Map (analysis_terrain_morphin – plane_fit_map.h) is a

Plane_Fit_Map that also has a Region, which is set in the constructor. It has
overloaded functions to add a point or point cloud to the map. These functions
center the Region at each parameter point, and add the point to all cells under the
region. When adding a single point, you can specify an in-plane rotation of the
region. The class has overloaded I/O functions. It has pass-throughs to find
region bounds and determine whether a point is in the region.

Doc 8.2 d2, p.27

3.7 Other Objects
Here are other classes that don’t fit in above.

• Targets (Analysis_edge-R1-00a – Science_analysis.h) is a class with: arrays of
row, col, size, and rank; setters; function to double array allocation; function to
draw each (row,col) on an image. Variable Npts tells amount of arrays used, but
is not updated by methods. PointArray (Analysis_edge-R1-00a – Specpoint.h)
has the same data as Target but statically allocated to 100 elements each.
Point_Array has no functions.

• Bounds (map_grid – grid_map_point.h) is an array of four point_2d.

• Mesh (arc_vision – mesh.h) includes an array of 3D points, an array of 2D texture

coordinates, and an array of triangles, dimensions of each array, and a Frame_l.
Can construct from a point cloud, taking every nth point (param n), though it is
not clear whether this means every nth row as well as every nth column. Contains
functions to write the mesh as an inventor file. Mesh_io_vrml (arc_vision –
mesh_io_vrml.h) includes code to write a parameter mesh as a vrml file, adding
member variables to specify material properties.

3.8 Non-vision objects that you might use anyway
The following data structures have precious little to do with computer vision. However,
you may encounter them, so I’ve documented them.

• Parse_Block (String_io – parse_block.h) is an stl::map of “label = value” pairs,

such as you might find in a parameter file. Major functions convert to/from a
string or stream with format “{ label = value … }”, add a label/value pair, check
whether a label appears in the map, and get/set a value for a parameter label
(getter has optional default value in case label is not present). Other functions get
pointer to map, copy all labels into a vector, convert a label to a String_Rep, and
clear the map. Construct empty or copy another parse_block. Cmd_string
(String_io – cmd_string.h) is a Parse_Block whose first string/stream entry is a
command name, stored internally as a value with label “_command”. This class
has functions to get/set the command value. Cmd_Array_Entry (string_io –
cmd_array_entry.h) is an stl::vector with functions to read/write to string/stream
with format “[blah blah blah …]” and to copy to a CLARAty Vector.
Construct empty, or pass a number of elements, an stl or CLARAty vector, a
string, or a data pointer.

• String_Rep (share – string_rep.h) is an stl::string that converts to a numeric type

when you typecast it, so you don’t have to manually atoi(), etc.

• String_io/ace_time_string.h as functions to read/write Ace_Time_Value and to
convert it to/from string.

Doc 8.2 d2, p.28

• Semaphore (share – semaphore_t.h) has an int protected by a mutex. I don’t

really get it.

• Ref_count (share – refcount_t.h) is an integer (default value = 1) that you can use
as a counter. It has a getter and functions to increment/decrement. Mainly it is
used to track how many variables point to the same block of memory, so that a
destructor can tell not to free memory that is still in use.

• Factory (share – factory.h) is a class for helping other classes instantiate

descendents when you don’t know ahead of time which descendent will need to
be instantiated. A Factory has an STL map of constructor pointers versus “keys”,
a function to add such a pair, and a function to pass in a key and return the result
of the constructor. Factory works with class single_instance, which takes two
functions as template args, calls the first function when a single_instance is
constructed while no others are, and calls the second function when the last
single_instance is destructed. To incorporate a factory into a base class, the class
must declare a member Factory *, have its header file call a macro to make a
static single_instance of a factory for that class, and have its cc file call a macro to
instantiate the factory’s static space. Each descendent that will use the factory
must also call two macros to create/instantiate a class that adds the descendent’s
constructor to the factory and to instantiate that class’ static space. It appears that
camera_model is the only base class that wants a factory.

• GL_Object (util_open_gl – gl_object.h) is a base class for drawing. It has a

Point<float> (world coordinates of object origin) with setters, getters, and
functions to add another Point<float> to it. Has a do/not draw flag with setters
and getter. Has a virtual (must be redefined) function to draw the object, a
function to translate to the member point and then draw the object, and a function
to draw text.

• GL_Display_List_Object (util_open_gl – gl_object.h) has an Opengl display list

ID and functions to start, end, and execute the display list.

• GL_Origin (util_open_gl – gl_object.h) is a GL_Object whose draw function
draw coordinate axes of (member variable) length starting at the object origin.

• GL_Hash (util_open_gl – gl_object.h) is a GL_Object whose draw function

draws a 3-axis, 3D cross of (member variable) length and color starting at the
object origin.

• GL_Ground_Plane (util_open_gl – gl_object.h) is a GL_Object whose draw

function draws a grid of lines in the X-Y plane. Grid has spacing, number of
cells, and line color according to member variables set in the constructor. Every
4th line has inverted color.

Doc 8.2 d2, p.29

• GLUT_Window (util_open_gl – glut_window.h) is a wrapper class around
GLUT to draw 3D scenes. It provides a static array of GLUT_Windows, which
each store flags for mouse motion and mouse buttons and parameters for a
window and its associated frustum. The class has a list of registered GL_Objects
with functions to register, unregister, and draw all. It has various functions to
modify the window and to override callbacks such as timer, key handling, and
mouse motion. Has functions to draw text and to manipulate windows, such as
hiding/showing, refreshing, and changing the title bar.

• MemoryManager (JPLPic – nav_memory.h) replaces standard memory

allocation. Lots of comments in the file describe usage. The important part is
that a class that uses a MemoryManager generally has a pointer to one as a
member, and assigns it in the constructor. It can then use the NEW, DELETE,
and DELETEV macros, which take the pointer, instead of new and delete, to
manage memory in a safe manner. Seems like those should be member functions
instead of macros, but they are not. MemoryManager also provides functions to
look at memory usage. The file redefines new and delete, unless you specify
NAV_MEMORY_BYPASS, which JPLPic does.

Doc 8.2 d2, p.30

4. General CLARAty Vision Functions
This section describes objects and functions that feel more like operators than data
structures. I have somewhat arbitrarily grouped them as image operators, image I/O,
feature detection/tracking, visual odometry, stereo, hazard mapping, miscellany, and non-
vision functions that I felt compelled to document. For a good overview, just skim
through and look at the boldface headings.

4.1 Image Operators
Image Operators are those operations that, for the most part, apply in the same way to
each pixel in an input image. They are supposed to inherit from class Image_Op and
have a common interface. Currently nothing inherits from Image_Op, but most share
Image_Op’s interface.

• Image_Op (Image_Ops – image_op.h) is a base class intended to be inherited by
the other image operations. It just declares a constructor and the function filter().
The latter is intended to take a source image and a destination image, resize the
latter, and fill it by processing (but not modifying) the former. It will probably
either become the base class for all image operators or it will go away.

• Convolve_Op (Image_Ops – convolve_op.h) has filter() that convolves the input

image with a kernel and stores the result in the output image. Mathematically, it
is actually a correlation, but image-processing people call it a convolution. There
are some optimizations that kick in for 1-dimensional and/or anti-symmetric
kernels. Specify the kernel and whether it is anti-symmetric in the constructor or
with a setter. Pixels within ½ kernel of the edge of the input image cannot
properly serve as centers for the kernel because part of the kernel extends beyond
the image. Use the constructor or setters to specify whether the output image
should have the same size as the input image, or be reduced by ½ kernel on each
side (to avoid processing the borders), or be extended by ½ kernel on each side.
For same sized or enlarged outputs, similarly specify whether to leave border
pixels unprocessed, or whether to process them by inventing input image data by
reflecting the edge of the input image, wrapping around the far side of the image,
or setting off-image pixels to some constant value. Not all of these options are
currently supported.

• Gradient_Op (Image_Ops – gradient_op.h.) Filter() convolves an image with a

horizontal or vertical step or difference-(derivative?)-of-Gaussians mask, to
generate a gradient image. Specify the mask type, direction, and size in the
constructor or setters. Filter() actually calculates a convolution mask and then
calls (inherited) convolve_op’s filter() to do the convolution. It might make sense
to not regenerate the convolution mask every time you filter(), though the time
savings would probably be insignificant compared to the convolution time.

Doc 8.2 d2, p.31

• Rescale_Op (Image_Ops – rescale_op.h.) Filter() rescales the input image
intensity to the range between member variables “_min” and “_max.” Set min
and max in constructor or using setters. Filter() is not optimized.

• Transform_Op (Image_Ops – transform_op.h.) Filter() applies a 3x3

homogeneous transform to input pixel coordinates to re-map pixels to the output
image. The output image has the same dimensions as the input image. Output
pixels with no corresponding input pixels are set to 0. Set the transform in the
constructor or with a setter.

• Rectify_Op (Rectify_Op – rectify_op.h.) Filter() applies a lookup table to input

pixel coordinates to re-map pixels to the output image. There are actually two
lookup tables, which are Image<float> that store the replacement x and y
coordinates of each pixel. Fill the lookup tables in the constructor or with setters,
by passing two lookup tables, a camera model (to create un-distortion tables), two
camera models (to reproject from one distorted viewpoint to the other), a 2x2 or
3x3 transform, a 3x3 transform plus a camera model (to do un-distortion plus
transformation), or another rectify_op and a subsampling factor. Global function
rectify_image() does the same as member filter() but can also scale pixel
intensity using a parameter function. Subsample_rectify() “decimates” the input
image by an integer factor, and then applies the transform.

• st_warp_*() (camera_model_jpl – st_warp.h) are functions to generate, apply,

and do file-I/O for warp maps, which are pixel coordinate look-up tables to rectify
images taken with a CAHVOR(E) camera to equivalent CAHV model images.
The functions rely on stereo.h, which does not appear in the module. The warp
maps are stored as char *, presumably because C has no inheritance. I
recommend moving the relevant structures from stereo to camera_model_jpl and
making a warp map object.

• Non_Maxima_Sup_Op (Image_Ops – non_maxima_sup_op.h.) Filter() sets

output image pixels to 1 if the corresponding input pixel has larger value than its
4-neighbors or 0 if it does not. A 1-pixel border has undefined values. There is a
lot of commented-out code, implying that this function is not finished.

• Corner_Detect_Op_Harris (Corner_Detect_Op – corner_detect_op_harris.h) is

the filtering step of a Harris corner detector. Filter() sets each output pixel (x,y)
to the lower eigenvalue of the matrix [Σ(IxIx) Σ(IxIy); Σ(IxIy) Σ(IyIy)], where
sums are taken over pixels in a window around coordinates (x,y) and Ix and Iy are
input-image gradients at those pixels. Gradients are taken using a derivative of
Gaussian mask with a 1-pixel sigma. Specify the window side-length and mask
width in the constructor or with a setter. For additional speed, modify the code to
not zero the output pixels before filling them and to use marching sums in the
final loop.

Doc 8.2 d2, p.32

• Resample_Op (Image_Ops – resample_op.h) has resample() that takes parameter
“ratio” (floating point) and magnifies the input image by that factor. It takes an
optional parameter for interpolation, which can specify any interpolation type
understood by Image. There is also halfsample(), which is a shortcut to shrink an
image by half, averaging 4-pixel blocks. Unlike arc_vision sub-samplers below,
resample() can magnify or shrink an image and is not limited to integer
resolutions. However, resample() has a non-standard name (should be filter()),
takes too many parameters, and incorrectly assigns output pixels based on
input_pixel*ratio rather than input_pixel/ratio. Also, resample_op is pretty
clearly unfinished.

• blend_subsample() (arc_vision – blend_subsample.h) is standalone function that

sub-samples an image, replacing each n by n block (integer n) with the average of
the pixels in the block. It stores the results in a second image, leaving the first
image unmodified. Assumes image type can cast to integer. If image size is not a
multiple of n, output excludes incomplete blocks at the bottom and right edges,
even though the function spends time making sure pixels are on the input image.

• pick_subsample() (arc_vision – pick_subsample.h) is standalone function that

sub-samples an image, replacing each n by n block (integer n) with the pixel in
the top left corner of the block. It stores the results in a second image, leaving the
first image unmodified. If image size is not a multiple of n, output includes
representatives of the incomplete blocks at the bottom and right edges.

• Edge_Detect_Op_Canny (edge_detect_op – edge_detect_op_canny.h) is a

standard, 3-step Canny. It’s Filter()generates an edge magnitude image (rms of
1D derivative of Gaussians), suppresses local non-maxima (complicated formula
over 9-neighborhood), and threads adjacent edge pixels. Filter() takes an extra
parameter (a pointer to fill with a list of edges) and returns an image of edge
orientations. If the internal edge magnitude image, edge orientation image, and
edge list were members with getters, then the class could be an Image_Op with
standard filter() interface. If switches allowed the user to disable edge list and/or
orientation image generation, then the user could avoid a speed penalty for any
unused functionality. The threader, follow_iter(), follows adjacent pixels from a
starting pixel to a pixel with no unthreaded 8-neighbors with edge magnitude
above a “low” threshold. It stores the pixel positions in a list and copies their
edge-magnitude-image values to the destination image. The threader ignores
branches and pixels on the far side of the initial pixel, but it could track all
branches if its inner loop did not break after finding one suitable adjacent pixel.
Alternately, the existing functionality could probably be faster if the current pixel
were not stored in a vector. Function follow() is a recursive, probably aborted
threader that does not create edge lists. Filter() calls follow_iter() to create an
edge vector for each pixel that does not already appear on another vector and
whose edge magnitude is above a “high” threshold. It returns a list of all such
vectors that have at least 3 pixels. Perhaps minimum edge length should be a
constructor parameter or have a setter. The destination image and orientation are

Doc 8.2 d2, p.33

zeros for suppressed non-maxima and non-zero for maxima, even if associated
edge vectors are eliminated. The constructor can set gradient filter size and the
“high” and “low” threading thresholds, or it can accept defaults. Function
_hypotenuse() should perhaps be replace the similar cl_rms_op(). The canny
edge detector in the crater detection code should be merged with this class.

• Fast, custom image ops on JPLPics (jplpic – nav_fast_filter.h). Macros

BEGIN_SCAN_ONE_IMAGE and END_SCAN_ONE_IMAGE wrap a kernel to
operate on each pixel of a JPLPic. There are similar macros for TWO, THREE,
and FOUR images. APPLY_FILTER_TO_ONE_IMAGE applies parameter
filter-code to each pixel neighborhood in a JPLPic. Presumably these macros run
much faster than (more elegant) inline functions that take a function pointer with
the kernel code, because presumably you can’t inline a function that you pass as a
pointer. END_FILTER_ONE_IMAGE and COMPARE are #defined to nothing.

• Fast, sliding-sum operators on JPLPics (jplpic – jplpic.h, pic_filter_mem.cc)

declare statically allocated, very large buffers for sliding sum operators, along
with the operators that use them. Several operators all share the same space,
instead of having separate buffers for each operator. Operators do blob filtering,
smoothing (boxcar, questionable use of “scale” variable) and DoG (two boxcars)
with optional decimation by ½ (decimate vertical, convolve, decimate horizontal),
and gradient finding (x, y, both, or both plus smoothing). Most of those can
produce byte or short images. Defines PREPARE_STATIC_BUFFER to wrap
new and some functions to free all of the static memory.

• Other, pre-defined JPLPic operators (jplpic – jplpic.h and pic_filter.cc).

#Defines INT_MAX and INT_MIN, which are surely redundant. Ifndef
OMIT_IMAGE_OPERATORS: defines MiniMax (4 variants – seem to clamp an
image at a minimum value of image and either scalar or other image pixel or
neighborhood defined by mask image); has functions to shift and scale a JPLPic
by two scalars or images; find the absolute difference between two images;
convolve with another JPLPic; superimpose one image onto another even of
different data type; and average the pixels in a mask-defined footprint. Has
functions to rescale pixels (with optional param min/max) to an 8-bit image;
resample (average) by arbitrary factor; subsample (decimate) by factor of 2, 4, or
8; extract a band and colormap from a multi-band image; create a left-to-right
mirror image; compute a threshold at a histogram fraction; threshold into a new,
0-or-255 image. Many of these operators rely heavily on macros, making them
illegible but perhaps fast. PyramidLevel is a wrapper for
PYRLEVEL_GOOD_LOWBITS, and I haven’t figured out what that does. Don’t
know what FindSun does, but it is in the “OMIT” group. There are declarations
but no definitions of for (probably vestigial) functions to convolve with DOG
filter, “decimate” by a factor of 2, and rotate an image. Pic_filter.cc includes
stereo.h to get macros NO_RANGE and NO_S2_DISP, which are used in
Resample() to avoid blending invalid pixels in 16-bit disparity maps and 3-vector
float and double images. That is the only reason the JPLPic module has stereo.h.

Doc 8.2 d2, p.34

NO_S2_DISP is redundant with JPLPic.h’s IS_UNDEF_DISPARITY() macro,
while NO_RANGE probably ought to be redundant with
IS_UNDEF_3D_POINT(), though currently the latter is probably in error.
Perhaps you could define the macros (or make them consts) here or in JPLPic.h
instead of in stereo.h, and then eliminate stereo.h from the module. A local copy
of stereo.h is no more robust than local macros. Further, perhaps the stereo code
should get its definitions of NO_S2_DISP and NO_RANGE from JPLPic.h, not
vice versa, as they are a feature of the image, not the stereo algorithm.
IS_UNDEF_3D_POINT may be working with the pad value of
JPLPic::WriteHeightField(), not the undefined value. Perhaps those two should
be made to match.

• Filter_Slog (arc_vision – filter_slog.h) implements the Ames SLOG algorithm.

Apply() convolves an input image with a Gaussian, convolves the result with a
cross filter (4 at center, -1 at each 4-neighbor), then thresholds the result, setting
negative values to 0, non-negative values to 255. It stores the results in a second
image, leaving the original unchanged. It can handle a sub-image as the input
image. A 1-pixel border (where the cross filter cannot reach) is all 0, and a larger
border (where the gaussian cannot reach) has undefined output. There is a setter
function for the width of the Gaussian (specify root2*sigma). Internally, the class
has a Gaussian mask maker and a convolver specialized for a symmetric,
separable mask. Both internal functions are or should be redundant with the
CLARAty Convolve_Op or its descendents. The convolver appears to handle the
last row of data incorrectly as it cleverly convolves in place. There are several
opportunities for optimization, including copying in a sub-image, not zeroing the
entire output image, and not convolving the margins of the image.

• Correlator (arc_slog_tracker – correlate.h) is a fast correlator for 1-bit-per-pixel

ATImages. Its single regular function, Correlate32(), XORs a (parameter) 32x32
kernel across a (parameter) sub-window of a (parameter) input image, storing the
number of common bits under the mask (0..1024) in an output image. The
correlator can skip (a parameter number of) rows and/or columns between mask
positions. The kernel is passed as 32 ATImages, each shifted 1 bit from the
previous one. The class uses a static lookup table to count the number of common
pixels (zero bits) in two XORd shorts. It has a function to generate the table and a
static counter to make sure that the table is not re-constructed or destructed while
another Correlator is using it.

• Analyzer (arc_slog_tracker – analyze.h) has functions to find the maximum value

in a (parameter) sub-window of an (input) 16 or 32 bit-per-pixel ATImage or the
minimum in a sub-window of a 32 bit-per-pixel ATImage. Not sure why the
functions are not templated for pixel type.

• Transformer (arc_slog_tracker – transform.h) has many operators for ATImages.

There are functions to filter a sub-window of an image into another image, using a
(parameter size) moving average filter or an SDOG (sign of difference of 2

Doc 8.2 d2, p.35

moving average filters of parameter size). There are functions to create a new
ATImage by: cropping an ATImage; replacing an image with 7/8 of its intensity +
1/8 intensity from another image; packing a 16 bit-per-pixel image containing
only 1s and 0s into a 1 bit-per-pixel image; shifting a packed image by 1 bit;
rotating the image; subsampling a subwindow at an integer period; and finding
sign or magnitude of difference of two images. Some functions implicitly require
16 bit-per-pixel images.

• Dewarper (arc_slog_tracker – dewarper.h) has a principal function that unrolls an

x-y ATImage into a rho-theta ATImage. A member lookup table records the input
pixel address for each output pixel. A Configure function creates the lookup
table. Construct empty and call Configure() yourself (safe) or pass parameters to
a constructor that calls Cofigure() (convenient.) The class records dimensions of
input and output images, and the center and radius of the input image disk to be
unrolled.

Doc 8.2 d2, p.36

4.2 Image I/O, Display, and Markup
These are non-vision image operators. Image I/O consists of subclasses of classes
Image_IO and RBG_Image_IO, all sharing a common interface. Image display generally
uses QT, which is apparently a way to quickly generate X windows. I’ve never gotten it
to work in CLARAty, and the documentation here is not enough to use it.

• Image_IO (Image_IO – image_io.h) and RGB_Image_IO (Image_IO –
rgb_image_io.h) are base classes for file I/O with Image and RGB_Image objects.
Most other classes have their own I/O routines, but with the large number of
image file formats, image file I/O is big enough to warrant its own class. The
class has a member filename string and declares one pair of load() and save()
functions for each standard pixel data type. The functions are virtual and defined
to null, so that a child class is forced to overwrite them. Explicitly declaring
functions for each pixel type is ugly, but perhaps it allows us to not templatize the
Image_IO and RGB_Image_IO classes and yet accommodate compilers that can’t
nest templates. Each load() and save() function actually has two declarations, one
taking a filename and the other not. Why not just make the parameter optional
and have just one declaration?

• PNM_Helper (Image_IO_PNM – image_io_pnm.h) is a class with functions to

read/write PNM headers and comments to/from streams. The functions are static,
so you don’t need to declare a PNM_Helper, just use it as a scope operator. The
same file defines enum PNM_FILE_TYPE (the 6 pnm types) and enum
PNM_FILE_INFO (the information in a pnm header.) You can use these in
functions that read/write pnm files.

• Image_IO_Pgm (Image_IO_PNM – image_io_pgm.h) is a child of Image_IO

that redefines load() and save() to load P2 (ASCII) or P5 (binary) PGM files and
write P5 (binary) PGM files. The class includes a string for in-file comments,
which are read/written along with a file. Image_IO_Pgm_Simple
(Image_IO_Pgm_Simple – image_io_pgm_simple.h) is an apparently obsolete
child of Image_IO that reads and writes only P5 PGM files.

• RGB_Image_IO_PPM (Image_IO_PNM – rgb_image_io_ppm.h) is a child of

RGB_Image_IO that redefines load() and save() to load P3 (ASCII) or P6 (binary)
PGM files and write P6 (binary) PGM files. The class includes a string for in-file
comments, which are read/written along with a file.

• Image_IO_Pnm_State (camera_image_io – image_io_pnm_state) is a class for

reading/writing PNM files. It is presumably redundant with the image_io_pnm
module, and should probably get merged. It has 3 functions to load, save, and
load_stereo. The class also has an internal pnm_header class, which can read and
store a header and has a function to read an image body. Image_state.h has 3
inline global methods that each create an image_io_pnm_state and call one of its

Doc 8.2 d2, p.37

three functions, so you needn’t explicitly instantiate an object. The loader and
stereo loader do a lot of confusing Frame handling.

• Image_IO_Tiff (Image_IO_Tiff – image_io_tiff.h) is a child of Image_IO that

redefines load() and save() to read/write tiff files using a bunch of commands
from <tiffio.h>. Image_Tiff_IO (Image_Tiff_IO – image_tiff_io.h) is an
obsolete version of Image_IO_Tiff that does not use const for function parameters
or use a Tiff error handler during file writing.

• JPLPic File I/O functions (jplpic – jplpic.h, pic_io.cc) include functions to:

read/write a PIC file with optional endian reversing (several variants); write an
image as floats; guess a file’s pixel type from its name; read/write arbitrary file
format (using functions from libimage and parse_image.h ifdef NEW_READ,
else only works with PIC files); write with an optional overlay to a rawbits-PPM
file; write as ASCII art in 16 “grey” levels and user-specified dims; and write to
screen/file as atoi’d text. Has functions to read an image from a file with a C++
string-format version (with backslashed characters and octals for unprintable
characters), and to convert between image and C++ string in memory. If
OMIT_DRAW_OPERATORS is undefined but EXTRA_JPLPIC_WRITES is
defined, has function WriteGif. Helper functions (jplpic – good_fopen.h)
determine whether a file or directory already exists, locate a file on a set of paths,
and open a file for write even if the file already exists, and . These are good
things to make generally available in CLARAty, but I don’t know where.

JPLPic has a member variable that can combine three #defined bit flags (defined
in jplpic.h) to specify conversions to apply during writing. The conversions are:
scale intensity to 8 bits-per-pixel, convert floats to doubles, and byte swap for
floats/doubles. There is a getter for the variable and setters that clear all flags or
set/clear one. The constructor initializes the variable to parameter flags.

Pic_io.cc () defines NO_RANGE to understand missing pixels when writing a
height map and invalid pixels when writing a 3-vector image text 3-vectors. It
may also get confused with the 10000 appearing elsewhere in the code. It would
be better to use the same NO_RANGE that pic_filter.cc uses, which probably is
based on IS_UNDEF_DISPARITY() in JPLPic.h or NO_RANGE declared
independently in stereo.h. Neither option is particularly likely to keep up with
changes in the stereo code that produces these pixels, but at least the different
parts of JPLPic will be internally consistent.

The I/O routines use a few supporting functions/structures/macros (jplpic –
image_parse.h, filename.c, libimage.a). Prototypes for grey_image_read/write
and color_image_read/write, which mainly are used by pic_io.cc’s Read/Write
GenericImage(), appear in image_parse.h, with definitions presumably in
libimage.a. Those functions use ImageMemoryT (which basically duplicates
AnythingT) and ImageScaleT, both from the same header file. The files also
declare (but do not define or do not use) a lot of structures/functions for

Doc 8.2 d2, p.38

operations such as handling filename suffices, converting between suffices and
file formats, and reading/writing range images. JPLPic includes image_parse.h,
but probably needn’t, because it probably only uses IS_TRUNCATE, and it
probably needn’t. Filename.c relies on mwm.h only for safe_strncpy(), which is a
little silly.

PicHypothesisT (jplpic – image_parse.h, filename.c) is an image header,
apparently used for file I/O. Along with find_pic_params(), it is used in
pic_io.cc’s FilePixelType() to guess the JPLPic enum PixelType value most
appropriate for a file. The function is undefined, but may appear in libimage.a.

FormatTagT (jplpic – image_parse.h, filename.c) holds information about an
image file format: a string with the standard filename suffix; the corresponding
value of enum ImageFormatT, which has one value per file format; and pointers
to functions for reading, writing, and testing whether a file is that format. Array
known_image_formats has one FormatTagT for each value of enum
ImageFormatT. It is filled in with lots of format names and pointers to declared-
but-undefined functions. A function (used by pic_io.cc’s WriteGenericImage())
guesses the proper format for a filename, helped by a function that sorts through
known_image_formats. There is an unused function to print a list of formats from
known_image_formats. Seems like all of this belongs as one object.

 ImageT (jplpic – image_parse.h) is another image format. It has rows, cols, four

data pointers (red, green, blue, grey), and several fields that appear to be for file
I/O. It is only used by free_imageT() (undefined) and four file I/O functions
defined in libimage.a. The I/O files are only called from pic_io.cc’s
Read/WriteGenericImage(), and only ifdef NEW_READ.

• Here is an idea for loading images without knowing their file format a-priori. It is

redundant with (jplpic – filename.c)’s unused find_format_from_file().

o Let Image_IO declare, “virtual bool check_magic_number (char *) =0,”
and have sub-classes of Image_IO define check_magic_number() to tell
whether the parameter string contains the “magic number” for the class’
file format.

o Make Image_IO_generic_read, a sub-class of Image_IO. Give the class
a list of Image_IO pointers and a function to add pointers to the list.
Redefine load() to open a file, alternate calling check_magic_number()
and rewind() for each Image_IO pointer on its list until one returns true,
then close the file and call that Image_IO’s load(). To use
Image_IO_generic_read, programs must instantiate and register pointers
to subclasses of Image_IO for each file format he wants to be able to read.
This strategy does not address pipes, which cannot rewind, and it does not
address saving to multiple formats.

o To optimize the process, have Image_IO sub-classes separate _load() into
check_magic_number() and _load(), have their load() call both functions,

Doc 8.2 d2, p.39

and have Image_IO_generic_read::load() call the proper _load() rather
than closing the file and calling a sub-class’ load(). Subclasses that handle
multiple formats, such as Image_IO_Pnm, could record the actual format
in a member variable as part of check_magic_number().

• Draw_Op (draw_ops – draw_op.h) has functions to draw a box or a cross of

parameter size on a parameter RGB_Image, centered at parameter coordinates.
You can pass a parameter RGB_Color or default to a member variable color. The
module appears unfinished. It would be a good module to host the ellipse
drawing routines in the crater detection code.

• Cross_hair() (Analysis_edge – Science_analysis.h) takes an image and a list of

ellipses, and draws cross hairs and dotted ellipses on the image at each listed
ellipse. The crosshair drawing probably belongs with Draw_Op. The ellipse
drawing probably is redundant with the crater detection code.

• DrawFOV()(analysis_edge – specipoint.cc) draws a black circle of given center

and radius, plus a point at the center and an optional diameter in a given direction.

• Transformer (arc_slog_tracker – transform.h) includes functions to draw a box

or cross on an ATImage.

• JPLPic Drawing routines (jplpic – jplpic.h and pic_draw.cc). Macro
SET_PIXEL_AND_INC fills a pixel (and increments its pointer) from a color
map index or by shifting the existing color. Several functions use
SET_PIXEL_AND_INC to draw on a JPLPic: fill border with a fill color; set one
pixel’s color; draw an empty/filled box; draw an arc/circle (3 variants) using
many macros and optional fill. If OMIT_IMAGE_OPERATORS is not defined,
there are also functions to truncate a line segment to the part that appears in the
image, draw a line segment, draw a text string (5x8 font) or integer (5x7 font),
and get the pixel dims of a text string. #defines ABS(). Most drawing functions
have variants that allow wrapping around the image border. There is a function to
test whether a colormap entry just repeats one byte, and if so to return that byte.
That probably doesn’t belong here, but it is in this file. Many of these functions
are overloaded instead of using default parameter values. It is not clear why only
some of the drawing functions depend on OMIT_IMAGE_OPERATORS.
Functions to draw an empty/filled polygon are declared but undefined.

• Image_Displayer (image_displayer – image_displayer.h) uses QT and threads to

pop up and write to displays (i.e. windows.) The constructor opens one display.
A function can open up to 10 total. Other functions: copy an Image, RGB_Image,
or char * plus two dims into a display; make a display non-resizable (cannot
undo); and query coordinates of last mouse press in a display. Displays are stored
as Image_Display (image_displayer – image_display.h), which has the code to
set display images and to handle the display’s repaint and mouse events. The

Doc 8.2 d2, p.40

relationship between Image_Displayer and QtImageWidget is unclear, but
probably the former shows more images and the latter does more with one image.

• QtImageWidget (qt_image – qt_imageviewer.h) is a Qwidget whose paint-event

draws a member Qimage, at a member scale (default=1), along with a member list
of ImageAnnotations. It has functions to disable scaling, determine current size
from image dims and scale, tell the display to redraw without erasing, and set the
member variables then redraw. You can set the Qimage member to an Image or a
Qimage. There are handlers for mouse click and move, and for repaint.
ImageAnnotation (qt_image – imageannotation.h) is a text ornament for an
image. It stores 2D coordinates, a string, and a bool to say whether to show a
cross. It has getters. Qt_Image_Subscriber (qt_image –
qt_imageviewer_subscriber.h) is another QT class. It has a QtImageWidget and
appears to periodically query and redraw its Image.

• QtImageViewer (qt_image – qt_imageviewer.h) is a QtImageViewerUI

(undefined class) with a QtImageWidget, an Image, and a gamma correction. The
constructor seems to open a display window and attach default buttons to member
functions. There are pass-throughs to set the QtImageWidget’s image and
annotations. There are functions to zoom the image, write labels giving 2D
coordinates or image dims+scale, draw the image to the display, respond to mouse
click/move, and modify gamma correction. Image_Updater (qt_image –
qt_image_update_tester.h) has a constructor that sets a parameter QtImageViewer
to refresh using a parameter Image at a parameter frequency.

4.3 Feature Detection and Tracking

We implement a Harris feature detector, a Lucas/Kanade/Shi/Tomasi tracker, a
correlation-based tracker, and a SDOG tracker. We use a feature class with various
specializations.

• Feature_Window (feature_tracker – feature_window.h) is a 2D pixel window

extracted from an image pyramid, suitable for Shi-Tomasi tracking. It records the
window’s initial 2D position in the full resolution image, the number of pyramid
resolutions, a copy of the window’s pixels at each resolution, and the Shi-Tomasi
gradient images and sum-of-gradient matrices for each resolution. The regular
constructor allocates/fills the member variables from an image pyramid, initial 2D
position, and window width and height. The constructor uses a 7-pixel mask for
image derivatives and does not put feature windows within 3 pixels of the border.
There is also a copy constructor.

Descendents of feature_window define additional members (e.g., rotation angle)
to record accumulated translation and deformation of the feature. They define
functions to calculate image gradients and sum-of-gradient matrices with respect
to the new members, convert feature window coordinates to deformed/translated

Doc 8.2 d2, p.41

feature coordinates, and add sets of those members. Feature_Window_Trans
(feature_tracker – feature_window_trans.h) is a feature_window with a 2-vector
for translation. Three descendents of feature_window_trans are
Feature_Window_Scale (feature_tracer – feature_window_scale.h) with a
variable for scale, Feature_Window_Zrot (feature_tracker –
feature_window_zrot.h) with a variable for in-plane rotation, and
Feature_Window_Affine (feature_tracker – feature_window_affine.h) with a
2x2 matrix to handle affine deformation. These three use member Images as
lookup-tables to expedite get_Jg(). Feature_Window defines a sum-of-gradient
finder function that only feature_window_trans uses, as all other children
overwrite it. Perhaps the function should move to feature_window_trans. The
four functions defined by each descendent should perhaps be declared virtual in
the base class so that feature detectors and trackers could operate on a
feature_window pointer instead of individual child types.

• Feature_Detector (feature_tracker – feature_detector.h) has functions find() that

detect and append good features from a parameter image onto a (possibly empty)
parameter list of features (of one child class of feature_window). Perhaps one
find() could take a list of feature_window instead. Find() works in five steps.
First, it applies a Corner_Detect_Op_Harris to the input image to find the image
of lower-eigenvalues. Second, it zeroes any eigenvalues below a threshold, which
the user can set to a fixed value or a fraction of the highest lower-eigenvalue
(default is 50%.) Third, it zeroes any eigenvalues that are smaller than any of
their 8-neighbors, leaving only local maxima and plateaus. The current
formulation can produce some artifacts because it modifies the lower-eigenvalue
image in place and because it does not filter or zero a 1-pixel border around the
image. Fourth, it zeroes any eigenvalues that are within 7 pixels of a non-zero
eigenvalue or an existing feature (to prevent close-together features that a tracker
could jump between.) Finally, it generates an image pyramid, constructs feature
windows, and adds them to the list. The constructor takes feature window size,
sizes for derivative and corner filters, and minimum distance between features,
though it has defaults and setters for each. The minimum distance between
features is not actually used, as the constructor hardcodes a value. A tex file in
the module directory has a detailed algorithm description.

• Feature_matcher_lk (feature_tracker – feature_matcher_lk.h) is a

Lucas/Kanade/Shi/Tomasi feature tracker whose function match() tracks a list of
feature_windows into a new Image. Match() uses generic equations and virtual
functions from descendents of feature_window to allow arbitrarily deforming
features. There is one match() for each child class of feature_window, each
calling internal _match(). Why not just have one match() take a list of
feature_window? Setters control whether to end after number of iterations or
fixed threshold (default 20 iterations.) Match() creates an image_pyramid for the
new image, then for each resolution starting at the lowest, it adds the
feature_window’s position and translation to get new position, scales to current
resolution, then iteratively updates the position until reaching the stopping

Doc 8.2 d2, p.42

criterion mentioned above. The code is set up to reject features but, despite
calculating the SSD each iteration, it has no test to actually reject any features. A
tex file in the module directory has a detailed algorithm description.

• Feature_matcher_bf (feature_tracker – feature_matcher_bf.h) is a “brute force”

correlator that tracks a list of feature_window_trans into a new Image. It updates
the translation and SSD fields of each feature to reflect the minimum SSD of the
correlation within a search window. Search window size defaults to 20x20, but
can be set in constructor or with setters. The window is truncated at image
bounds. Image access by operator(r,c) is probably slow. Average SSD is
overestimated at image edges, where window is smaller but divisor is constant.
Does not implement sliding sums. Does not do sub-pixel parabola fit. Does not
do image pyramiding.

• Tracker (arc_slog_tracker – tracker.h) is an SDOG tracker, which is a fast

correlator that preprocesses one feature template (kernel) and a correlation
window in the novel image (area of interest – AOI) with a “sign of difference of
Gaussians” operator that reduces each to one bit-per-pixel and packs them into 32
pixels per long integer. It correlates these by summing absolute difference of 32
pixels at a time using one or two XORs and table lookups. Two member
variables of type TrackerParams store the size, position, and other details of the
kernel and the AOI. They can be set in the constructor or by calling member
Reconstruct(). The 32x32 kernel is stored as an unprocessed ATImage (_crop)
and as a set of 32 SDOG’d, packed ATImages (_packed_kernel[]), each shifted 1
bit further to the right to allow quick correlation starting at each of the 32 pixels.
The kernel is created from an Image and kernel-center coordinates using member
functions sdog_create_template_32() to set the kernel or
sdog_update_template_32() to average the new kernel (1/8 weight) with the
previous one (7/8 weight). Member function sdog_track() extracts the AOI at
parameter coordinates in a parameter Image, reduces it to an SDOG’d, packed
ATImage, correlates the kernel across it, and returns either the resulting Image or
the coordinates and height of the correlation peak. Internally, the tracker uses a
large bank of member ATImages, converting to and from Images as necessary at
the beginning and end of functions. Tracker is a child of Visual_Tracker, which
may be in the yet-undefined visual_tracker module. It has several functions that
pass through to the parent class.

TrackerParams (arc_slog_tracker – trackerParams.h) holds parameters for an
image sub-window to be used by a feature tracker: window dimensions, window
coordinates (top-left corner and feature “center” within window), the widths of
two masks for a difference of Gaussians (actually difference of boxcars) operator,
and a sub-sampling rate to support reduced resolution tracking. Pass the
parameters to the constructor or later to Init(). Has functions to re-set the feature
top-left corner coordinates and to clamp them within a (parameter) distance of
image border, presumably both to account for a new sub-sampling rate or a
feature that has moved. Has a function to write all members to stdout.

Doc 8.2 d2, p.43

checkRange() (arc_slog_tracker – trackerUtils.h) clamps the value pointed to by
a (parameter) pointer at the range (parameter) min..max. Presumably this is
vestigial or soon-to-be used code for the tracker.

TrackerResult (arc_slog_tracker – trackerResult.h) holds the output of a tracker,
with member variables x, y, and confidence. Constructor initializes the members.
Presumably this is vestigial or soon-to-be used code for the tracker.

• Camera_tracker (arc_slog_tracker – camera_tracker.h) is a child of Tracker,

specialized to take images from a camera and leverage estimated camera motion.
It seems to be still in development. Member variables record the coordinates of
the feature being tracked (i.e. the correlation peak) and the height of the
correlation peak. Function init_template() acquires a Camera_Image via member
_camera (presumably defined and initialized elsewhere), calls inherited
sdog_create_template_32() to create a template around a parameter Point_2D, and
fills member correlation peak coordinates and height from with the Point_2D and
1024 (maximum height.) Function match() acquires a Camera_Image, correlates
with the kernel using sdog_camera_track(), and records the correlation peak
coordinates and height in the member variables. Sdog_camera_track() actually
just records some details about the Camera_Image’s camera and calls inherited
sdog_track(). Match() centers the correlation at the previous correlation peak
coordinates (but see below) and reads correlation window size from (apparently
inherited) Camera_Tracker_Param _param. If the correlation peak height is
between the “update” and “replace” thresholds (also stored in _param), match()
calls sdog_update_template_32() to modify the kernel. Various functions in
camera_tracker provide a lot of debugging, writing images to file, and drawing
images to GUI.

Variable _targets[0] (presumably defined and initialized elsewhere) may contain
3D coordinates, presumably corresponding to the projected Point_2D being
tracked. If so, then match() changes behavior slightly. First, it centers the
correlation window at the projection of _target[0] into the new Camera_Image
(using the Camera_Image’s frame transform) rather than at the previous
correlation peak. Second, if match() finds a new correlation peak height above
the “update” threshold, it moves _target[0] to the nearest point on the ray from
pinhole through the new correlation peak, implying that the correlation is more
accurate than the motion estimate. Third, match() has an unexercised option, to
record the distance from pinhole to _target[0] in member _original_distance
(initialized by init_template()), and scale images to maintain the constant apparent
distance to (and thus size of) the target.

Camera_tracker_Telem and Camera_tracker_Param (arc_slog_tracker –
camera_tracker_telem.h) are children of Visual_tracker_telem (undefined but
probably in visual_tracker module). The former has a public string. The latter
has four public variables, recording a search window size, a confidence threshold

Doc 8.2 d2, p.44

to modify the kernel, a confidence threshold to replace the kernel, and a flag
saying whether to use a detailed GUI. Both classes define a bunch of overhead
that seems to involve file I/O.

Tracker_Telem and Tracker_Param (arc_slog_tracker – tracker_telem.h) are
children of Telemetry (undefined but probably in visual_tracker module). The
former has x, y, and confidence, as if it were a TrackerResult. They redefine a
few virtual member functions. Both classes appear to be unused, though they are
presumably related to other classes with similar names, and the include file is
(needlessly?) included by arc_slog_tracker – camera_tracker.h

• Multi_Slog_Tracker (arc_slog_tracker – multi_slog_tracker.h) is a child of

visual_tracker. It has an array of Camera_Trackers, allocated using member
reset(). Member init_template() takes a list of Point_2D, pairs each point with a
Tracker (assumes same number of each), and calls each Tracker’s init_template()
to make a kernel from each point. Member match() calls each Tracker’s match()
to track one point, then does a bunch of image saving and drawing to GUIs.

4.4 Visual Odometry
There are three modules related to visual odometry. One is a generic wrapper class, one
is a specialization using the JPL code, and one is a tester. These classes will soon be
revised, so I’m not yet going to document them.

4.5 Hazard Mapping

Morphin is an algorithm to generate a traversability “goodness” map from stereo data.
We have a wrapper class for the algorithm, a class for the goodness map, two classes to
describe the cells of the goodness map, and one class to store the parameters to Morphin.
Why not combine the morphin parameters and function classes? Why not combine the
two goodness map cell classes?

• Goodness_Cell (analysis_terrain_morphin – goodness_map.h, goodness_map.cc)

is a Grid_Map_Cell with fields for height, certainty, and “goodness”. It redefines
clear() to zero the extra fields. It has assignment and stream I/O operators. It also
has a function to convert certainty and goodness into an RGB value, interpolating
from green at goodness=1 to yellow at goodness=high threshold to red at
goodness=low threshold, all with intensity proportional to certainty.

• Goodness_Map_Template (analysis_terrain_morphin – goodness_map.h,

goodness_map.defs.h) is a Grid_Map with cells of type Goodness_Cell and a
member variable for minimum certainty of the map. There are getters for height,
certainty, and goodness of a cell. There are functions to: find the cell with the
worst combination of certainty and goodness; generate an RGB_Image showing
cell height or cell goodness (see Goodness_Cell); merge the data from a second

Doc 8.2 d2, p.45

map; and do stream and file I/O. The class takes an Indexer as a template type.
Goodness_Map and Scrolling_Goodness_Map are Goodness_Map_Templates
with the standard and wrap around Indexers.

• Cspace_traversability (analysis_terrain_morphin – morphin_analysis.h) has a

bunch of parameters to collectively describe the Grid_Map cells that a robot of
known footprint would cover when sitting over a particular cell.

• Morphin (analysis_terrain_morphin – morphin_analysis.h) calculates a

Goodness_Map. Function Compute_goodness_map() loops through each cell in a
Plane_Fit_Map, computes a cscape_traversability, and repackages it as a
Goodness_Map. Helper function compute_cell_traversability() computes the
cscape_traversability. It moves a (parameter) robot region (i.e. footprint) to a
(parameter) location and orientation on a (parameter) Plane_Fit_Map, records all
cells under the region, and accumulates them into a Plane_Fit_Moment. It
calculates the worst residual and variance of either a set of cells around the robot
center or of the accumulated cells under the robot region minus any one cell,
neither of which make much sense to me. The constructor copies a
morphin_analysis_params, which the class uses frequently.

• Morphin_Analysis_Params (analysis_terrain_morphin – plane_fit_map.h) is a

set of parameters for running morphin. Has a config_module, which we don’t yet
describe, and many threshold values and switches. Constructor sets default values
for thresholds and switches and adds each variable and a description to the
config_module. There are pass-throughs to the config_module’s file I/O
functions. The constructor can use these to read from a file at an optional,
parameter filename. There are a couple of setters and a function to copy many
parameters from a Wheel_Locomotor_Model.

4.6 Stereo
Stereo is organized as a base class that defines a common interface and a number of child
classes that define specific stereo implementations.

• Stereo_Processor_Impl (stereo_processor – stereo_processor_impl.h) is a base
class for stereo implementations. It records a pair of Camera_Images (inputs); a
disparity map, a range map, and a point cloud (outputs); and min and max
disparity, correlation window dimensions, and whether to filter the stereo results
(parameters). It has setters for the inputs and parameters, getters for the outputs,
functions to calculate each of the outputs, and flags to say which inputs and
outputs are actually filled. The constructor sets parameter defaults and can copy
an optional pair of Camera_Images. Child classes must define calc_disparity()
and can define calc_range() and calc_point_cloud() or use default functions that
do nothing.

Stereo_Processor (stereo_processor – stereo_processor.h) is an apparently

Doc 8.2 d2, p.46

aborted precursor to Stereo_Processor_Impl. It declares functions to set/get a pair
of Camera_Images, get (and presumably calculate) disparity and range maps, and
set window size, max disparity, and post-filter-enable. It does not define the
functions or member variables.

• Stereo_ Impl_SVS (stereo_vision_svs – stereo_impl_svs.h) is a child of class

Stereo_Processor_Impl that wraps SRI’s SVS stereo. It requires header files and
libraries from the SVS package. These are not CLARAty but are at paths
specified in the module’s Makefile. The class defines the functions declared in
the Stereo_Processor_Impl interface and adds a file reader and getters and setters
for confidence threshold and horopter X offset. Most of these functions access
two new member variables – a stereo operator object and a stereo parameter
struct. The class defines calc_disparity() but only has stubs to calculate range
map and point cloud.

• Stereo_Impl_Jpl (stereo_vision_jpl – stereo_impl_jpl.h) and JPLStereo

(stereo_vision_jpl – JPLStereo.h) are a child class of Stereo_Processor_Impl that
wraps JPL’s stereo algorithm, and the actual code for that algorithm. They will
probably change shortly, so I’m not documenting them yet.

• Stereo_Impl_WBS (stereo_vision_wbs – stereo_vision_wbs_impl.h) is

apparently Clark Olson’s wide baseline stereo. It deserves to be documented
here, but it is also likely to change soon.

• Disparity_Correlator (arc_vision – disparity_correlator.h) calculates disparity

and mask images from a stereo image pair. Apply(), does 2D correlation,
left/right consistency check, outlier removal, and (optional) hole filling. The
correlation step determines whether the input images are binary, and then uses
one of two correlators, for binary or regular images. Correlators use sum of
absolute difference, implemented as an exclusive-or, which I don’t really follow,
but which probably makes sense for compressed, binary images after the
filter_slog operator. Outlier removal masks out disparity pixels whose values
differ by more than a threshold amount from at least 60% of the pixels in the local
11x11 window. That is probably faster than blob filtering, but will eliminate thin
objects. Hole filling fills masked-out pixels by scanning left and right along the
scan line to the first non-masked pixel in either direction, and accepting the larger
disparity of the two. Setter functions let you specify min and max horizontal and
vertical disparity, correlation kernel size, and outlier threshold. You can also
specify whether to find horizontal and/or vertical sub-pixel disparity (parabola fit)
and whether to fill holes.

Doc 8.2 d2, p.47

4.7 Other Algorithms

• Nelder_Mead_Minimizer (Numerics – nelder_mead.h) implements the Nelder-
Mead Simplex Algorithm, which minimizes a user-supplied, multi-variable
function. The algorithm is rumored to be inefficient but capable of handling non-
continuous functions, without using derivatives, and without being sensitive to
starting values. Two equivalent member functions, nelderMeadMinimize() and
minimize(), take a function to minimize, an initial guess at the minimum values,
a maximum number of iterations, and the maximum allowable error. They
overwrite the initial values with final values. NelderMeadMinimize() takes a
target function that reads an array of doubles and returns a double, while
minimize() uses templates to take any function whose output can be cast to a
double and whose arguments can be cast from an array of doubles.

• Numeric_Solver_1D (solver_1d – numeric_solver_1d.h) is a class to find a root

or minimum of a 1D function. Function find_root() does Newton minimization to
find a root near the initial guess. Use constructor or setters to specify initial
guess, cost function (Function_1D pointer or a function that takes and returns a
double), perturbation (step size for calculating derivative), max number of
iterations, and max acceptable cost. Minimize() finds the (presumably non-zero)
minimum of a cost function. It takes as parameters three 1D points, in order, and
their cost values. It applies a parameter number “bisections”, each moving the
first and third point in toward the second and adjusting the position of the second
to move all three toward a minimum. If finally returns the second point.

Function_1D (solver_1d – function_1d.h) is a base class with a single virtual
function (must be redefined) that both takes and returns a double. It is used to
store the cost evaluation function for Numeric_Solver_1D, though it is not clear
why this should be preferred over a global function that takes and returns a
double.

• ransac() (arc_vision – ransac.h) is a standalone function that implements the

RANSAC (random sample consensus) algorithm for finding the transform that
aligns a (parameter) point cloud with a (parameter) model. It iterates three steps:
sample the input points; determine the transform to best fit them to the model; and
count the number of input points that are within (parameter) threshold distance of
the model according to a (parameter) test. Iteration stops after a (parameter)
maximum number of iterations or if a (parameter) fraction of the input points are
within threshold distance of the model. The model parameter is of templated
type. Its class must have: a “model” field, which stores the transform from points
to model; a function get_minimum_sample_size(), which returns the number of
points required to estimate the transform; and an operator() that takes an array of
points and an array of indices for those points, estimates the transform from those
points to the model, and stores the result in the “model” field. The class of the
point set parameter must include a size() function that returns the number of

Doc 8.2 d2, p.48

points. The algorithm’s sampling step does not check whether any of its samples
are duplicates.

• FindSun (JPLPic – jplpic.h) is a JPLPic member function that finds the centroid

of the sun in a JPLPic. The algorithms is: convert image to 8-bit; calculate 0.9 *
maximum image intensity and the intensity of the top 5% of the image histogram;
threshold the image at the larger of the two; blob find to locate high intensity
areas; and find the centroid of the largest blob. The function does not use existing
JPLPic functions to histogram, find top 5% threshold, or threshold the image. It
does not calculate the largest blob centroid during blob marking, which would be
faster. It probably belongs as its own operator, not as a member of JPLPic.

• Msky() (analysis_edge – sky.cc) finds a horizon in an image by looking at the
pixels. Divides image into vertical swaths. Starts a marker at the top of each
swath. Lets each marker drop until it reaches the nominal horizon based on
camera elevation & roll (or image bottom if no camera info), or until it drops 5
pixels below its neighbor on either side, or until the variance in a window around
the marker exceeds a (parameter) threshold. The process repeats as long as at
least one marker drops and then stops due to the variance threshold. If no markers
reach the variance threshold, the threshold is reduced to the highest variance
among the markers, and the process repeats. If no markers drop, the function
calculates a salience metric that considers the fraction of markers that stopped due
to high variance and the sum of current marker variances versus the average
variance of pixels above the markers. If the salience metric is the highest yet
encountered, the function stores the positions of the markers as the best horizon,
and then it raises the threshold and continues iteration, allowing swaths that had
previously hit a threshold to continue dropping. This process continues until the
variance threshold exceeds another parameter or all markers drop to their lower
limit, at which point the function returns the best horizon. If nominal horizon
goes above image or variance at top box is too high, the function aborts. There is
at least one error in loop dims using BOXWID vs. BOXLEN.

• Specpoint() (analysis_edge – specipoint.cc) extracts targets from a list of edges.

You provide a source image, the corresponding images of edge magnitude and
orientation, a linked list of Edges (each a list of pixels), the camera angles, the sun
angles, an FOV (in pixels), and a confidence threshold. The function zeroes edge
magnitudes at image border and where edge orientation is more than 90 degrees
from angle to sun. Next it places a one-FOV disk for each edge, centered halfway
along the segment between edge endpoints and then moved just over ½ FOV
normal to the segment, toward the sun. Next it evaluates confidence for each
edge, with a metric that increases with the mean intensity in the disk, decreases
with variance in the disk, and increases as the average intensity (using only the
low 70% of histogram) of pixels near the edge pixels decreases. Finally, it fills a
parameter Targets with FOV center, confidence, and size (distance between
endpoints) of up to 100 edges whose confidence exceeds the parameter

Doc 8.2 d2, p.49

confidence threshold, starting with the smallest edge. There is commented-out
functionality to mask out pixels above the horizon.

• Linlayers() (analysis_edge – linlayers.cc) takes an Edge list (a list of lists of

connected pixels) and generates an array of three images showing the locations of
large numbers of similarly oriented edge pixels. Conceptually, it has three steps.
First, it generates a binary image showing all edge points that are not within a
parameter length of the ends of edges. Second, it passes a window of (parameter)
side-length across that image, creating for each window a histogram of the
“orientations” of edge pixels within the window. Number of histogram buckets is
a parameter. The orientation of point P on an edge is the angle (CCW from x
axis) of the line between points P+length and P-length on the same edge (hence
points within length of edge ends are ignored.) Third, the function creates and
returns an array of three images. The first gives the fraction of the window
around each pixel that is covered by edge points, scaled from 0 (0%) to 255 (5%
or more.) The second gives the fraction of the edge points in each window whose
orientations are most populated, neighboring pair of histogram buckets. This is
scaled 0 to 255, showing the agreement between orientations within each window.
The third is a thresheld version of the second, showing 255 where “layers”
produce consistent orientations and 0 where arbitrary edges do not. Here are
some picky notes. The input window size is even or rounded down to an even
number for the second pass. The output images are shifted up and left by ½
window-size from the input edge coords, and a 1-window-size border on the right
and bottom of the images are not processed. Edge pixel coordinates are given as
(x,y) with y=0 at image bottom. These are translated into (r,c) with r=0 at top to
create the initial edge image. Windows with more than 255 edge pixels are not
handled precisely. The third (thresheld) image also requires that the fraction of a
window containing edge pixels exceed 0.3% of the area of the window, which is
probably a bug that intended to verify that edges occupy some minimum fraction
of the window.

• LayerAnalysis() (analysis_edge – layeranalysis.cc) makes a list of ellipses

representing blobs in a binary image. It takes two concentric binary images, one
being smaller by (window_size-1)/2 for (presumably odd) parameter
window_size. The function extracts all regions of 4-neighbor connected pixels
where both images have “on” pixels. It throws away any regions whose size
(number of pixels) does not exceed (parameter) min_size. For the largest
(parameter) maxblobs regions, it calls CreateEllipse() to generate the best fit
ellipse for the region. If the larger image (presumably a mask) is NULL or the
wrong size, it is assumed to have all “on” pixels. If maxblobs exceeds hardcoded
MAXBLOBS, it is reduced to the latter. It fills parameter number of actual blobs
and returns the list of ellipses. It turns off all of the pixels of the smaller image.

• Science_Analysis (Analysis_edge – Science_analysis.h) is a class with 6

functions that are just wrappers to call canny.filter + rescale.filter, msky(),

Doc 8.2 d2, p.50

linlayers(), specpoint(), layeranalysis(), and Cross_hair(). The first 5 do various
image interpretation tasks, while Cross_hair() does image markup.

• CheckBorders() and _CheckBorders() (analysis_edge – sky.cc) find the

leftmost, topmost, rightmost, and bottommost row/column of a byte image for
which the row/column average exceeds 1. For CheckBorders(), acceptable
row/column must also have variance within some threshold of that of the next-
inner row/column. Neither function is actually ever used.

• FOVMeanStd() (analysis_edge – specipoint.cc) calculates the mean and

deviation of intensity (0-1) of pixels in a disk, given center and radius.

• SeaLevelHorizon() (analysis_edge – sky.cc) calculates the 2D, in-image-plane
line (x0,y0,m) of the sea-level horizon, given camera elevation, roll about center
pixel, and angle/pixel (does not interpret image). It can optionally draw a black
line at the horizon.

• Geom2FilterDir() (analysis_edge – specipoint.cc) returns angle to sun in image

plane given sun az/el and camera az/el/roll in world coords.

• NormShadowValue() (analysis_edge – specipoint.cc) takes a list of edge pixels,
creates a line segment at each (from –0.5σ to 1.5σ for param σ, oriented
according to a parameter orientation image), histograms the points in the
segments, and returns the average intensity (0 to 1) of the lower 70% of the
histogram. Variable hist[] is allocated 1 entry low. Ignores σ/2 points on either
end of the edges list.

4.8 Non-vision functions you might use anyway

• String handling functions (share – string_util.h). Functions to copy a string and

strip specified characters from front and/or end. Functions to check whether a
string has a specified character, and to remove or replace everything after its last
occurrence. Structures that have these first two sets of functions as operator(), as
in functors, below. Functions to extract the first double, long, bool, quoted string,
or token (specified characters or delimiter), or to extract all tokens, from a string.
Function to put quotes around a string and convert any existing quotes into
backslash-quote. Define string_printf that writes a string, unless vxworks.

• More string handling functions (jplpic – Mwm.h, cistr.c, filename.c). Case-

insensitive string comparisons cistrcmp() and cistrncmp() are not elegant, but
could be added to the Share module’s string_util.h. Mklow() wraps tolower.
Cistrcmp() is defined only in cistr.c, but is unused. Cistrncmp is defined in both
cistr.c and filename.c, while mklow is defined in both mwm.h and filename.h,
suggesting that cistr.c is unnecessary. Mwm.h has a lot more function
declarations, macros, and structures, but virtually none of it is used.

Doc 8.2 d2, p.51

• hex_to_int() (share – common_defs.h) extracts the integer value of a hex number

(starts with “0x”, contains only 0-9 and a-f, ends in whitespace, \n, or \0)
embedded in a string. It cannot handle digits A-F, dies ungracefully if an illegal
character is in the number, and does not recognize \t as ending the number. If you
make a better routine, you should offer it to the repository.

• Operators << and >> (share – string_defs.h) are redefined for the templated

basic_string type, for a version of vxworks that had defined them in a cc file
where the templates would not be properly resolved.

• order() (share – common_defs.h) returns the order of magnitude of a float.

• cl_sleep() (share – common_defs.h) sleeps for a parameter number of seconds if

you are using C++ and ACE. Does nothing otherwise.

• Byte parsing (share – common_defs.h) defines macros MSB, LSB, MSW, LSW
to return top or bottom byte/word of a short/long.

• Math helper functions. (share – common_defs.h) has C++ macros cl_min (2

args), cl_max (2 args), cl_min3, cl_max3, cl_sgn, cl_sqr, cl_abs, cl_in_range
(max > x > min). It also defines sgn and sqr for legacy vxworks code.

There are redundant definitions for many of these (JPLPic – real_helpers.h),
including an absolute value function that will probably fail on very small numbers
and may account for why other JPLPic files redefine ABS. The latter file also
defines DEG2RAD and RAD2DEG macros. It defines an epsilon and macros to
test two numbers: GT/LT than by more than epsilon, GE/LE/EQ/IN with
allowable error of epsilon, where IN means between two values. There are also
EQe (provide your own epsilon) and INe (provide your own, larger epsilon). A
second set of comparisons decides whether the difference between two numbers is
approximately GT/GT/LT/LE/EQ/EQe a multiple of a parameter period. There
are functions to shift an angle (in radians) to the ranges 0 to 2pi or –pi to pi,
though the use of the approximate comparisons makes them a little sloppy at the
ends of the range. There are functions to find the smallest signed or unsigned
distance between two points on a number line that wraps around at a parameter
period. A function maps a float number from a float range to an int number line.
A function rounds double to int with symmetry about 0. Macros do fmod (float
modulus) but return a positive remainder or round very high remainders to 0.
(JPLPic – mwm.h) defines (unused) in_range(), int_min(), and int_max() that are
redundant with cl_* versions.

• Fop(a,b) (analysis_edge – specipoint.cc) is true iff a, b, and a>=b.

• Error handling (share – common_defs.h) defines several functions that logmsg

and exit(1) to report various errors such as divide-by-zero, so that you don’t have

Doc 8.2 d2, p.52

to write your own printfs. Also, if c++, defines macros to delete and null pointers,
write a message plus current __LINE__ and __FILE__ variables (whatever those
are), and time a code block. Also, (JPLPic – real_helpers.h) has believe*(), which
replace assert() by returning 0, INTERNAL_ERR, void, or parameter value if a
parameter test fails.

• More error handling (jplpic – ErrHandle.h). A bunch of macros, consts, and

functions for reporting errors. Has enum types NavErr (error return values) and
ErrorSeverity. Bunch of #defines and #undefs if MER. #defines BOUND() to
abort or ignore on memory overrun. #defines true and false, which could be an
issue for C++, and probably is redundant with common_defs anyway. Defines
Warning(), Message(), FatalErr(), error(), err_print(), DGB(), and VDBG(), all of
which are basically printf. #Defines ERR. Defines a bunch of EINFO*,
EWARN*, and EFATAL* macros that generally resolve to printf, and are likely
used for debugging. I imagine that everything but NavErr may belong in a
CLARAty include file, while NavErr can move to nav_memory.h.

• Display.h (share – display.h) has several functions to format screen output of text.

• Arithmetic and logic member functions (share – various files). CLARAty

provides a short cut to add arithmetic and logic operations to a class definition.
Claraty_gendefs.h defines 2-byte bit flags (CL_OP_*) to represent standard
arithmetic and logic operators. If you #include claraty_gendefs.h, #define
CL_OP_MODE to some combination of these bit flags, #define CL_OP_TYPE to
the name of a regular class or CL_OP_TEMPLATE to the name of a templated
class, and then #include claraty_opgen.h (formerly operators.h), then the compiler
will define class members for the operators you specified. You can #define other
CL_OP_* constants to handle cases such as classes with multiple template args or
defining members for specific template instantiations. I’m not sure how useful
claraty_opgen is, because its member functions rely on your class already having
definitions for ==, +=, etc. The only files that actually use it are the Matrices
module’s matrix_operators_old.h and the bits module’s bits.h. If you #include
claraty_gendefs.h, #define CL_OP_NAME to a class name (including template
specifier if the class is templated), #define CL_OP_MODE as above, and
#include claraty_expgen.h, then the compiler will declare headers for the
operators for the class. This is a good way to instantiate templates with specific
template types. Only the Matrices module’s matrix_templates.cc uses this.

• Cl_*() List processing functions (share – claraty_functors.h). These functions

process input list(s) to modify and return a scalar. The list(s) and scalar are inputs
with different template types. The first list is specified by first and last element
(pointers or iterators.) The input scalar establishes the output type. Presumably it
would be good to add things like mean and variance to this set.

o cl_inner_product() returns the dot product of two input lists, added to the

scalar input.

Doc 8.2 d2, p.53

o cl_accumulate() returns the sum of the elements on a list, added to the
scalar input.

o Cl_reduce() takes a list, a scalar, and a binary cl_* operator (see below),
walks down the list applying the formula “scalar = op(scalar, *list++)”,
and returns the modified scalar.

• Applying a function to each member of a list (share – claraty_functors.h).

o cl_* operators are templated classes with operator() defined. They
include cl_round (to nearest int); cl_left_shift and cl_right_shift;
cl_bit_and, cl_bit_or, cl_bit_xor, cl_bit_not; cl_lessthan_op,
cl_lessthan_equal_op, cl_greaterthan_op, cl_greaterthan_equal_op
(compare); cl_rms_op (hypotenuse); cl_sumsq_op (hypotenuse squared);
cl_max_op, cl_min_op, cl_plus, cl_minus, cl_multiplies, cl_divides;
cl_abs_op. Operator() has one or two inputs and one output, all of which
share one data type except for the four comparison operators (bool output),
cl_round (specify output type too), and cl_*_shift (number of bits to shift
is a separate type.) You instantiate one of these structs with no constructor
args, as an argument to cl_transform(), cl_apply(), or cl_bind2nd(). Why
not use functions instead? Perhaps because you can’t instantiate a
templated function as an argument to another function, and not all classes
have already-instantiated operators such as operator+ defined, and we
want to be consistent.

o cl_transform() applies a unary or binary cl_* operator to one or two lists
of inputs to produce one list of outputs. You provide the first and last
element of the first list (presumably pointers or iterators), the first element
of the (optional) second input list, and the first element of the output list,
all of which are templated types. Cl_apply() wraps cl_transform() and
applies unary, cl_* operator, in place, to a list (any stl container type).

o cl_bind2nd() makes a new unary cl_* operator from a binary cl_*
operator and an argument to be used as the second operand of the cl_*
operator. Cl_bind() makes a no-argument cl_* operator from a unary cl_*
and an operand. Typically, you would send the result to cl_apply() or
cl_transform() to apply an operator to each element of a list, using the
same operand. The new operators are cl_binder2d or cl_binder structs.

o cl_simple_function, cl_unary_function, and cl_binary_function are the
base classes for cl_*. They just define typedefs for the class’ templated
types. I do not know what value they add. A common cl_* base class
with virtual operator() would let you declare cl_transform() with the base
class as a parameter, but we don’t do that. Only cl_unary_function
appears outside claraty_functors.h, inherited by functions that check if a
point is within a bounding box – a good place for a cl_transform.

o Vfunctor* are three classes of templated type, whose operator() takes 0-2
args and returns a new instance (no constructor args) of the first templated
type. They appear only in obscure, non-vision code.

• TIME() (camera_model_jpl – Timing.h) is a macro that returns either the current
time or the time since the previous call.

Doc 8.2 d2, p.54

5. Constants
Here are some constants that are used in the various CLARAty modules.

• Standard CLARAty Constants (share – common_defs.h). This must be

included before iostream.h.
o If vxworks: define NULL if needed; include some vxworks libs; define

SHORTSWAP depending on _BYTE_ORDER.
o If vc++, include iostream and suppress some compiler warnings. I believe

that was necessary when I used vc++, but I don’t think it worked. So the
test for whether you are vc++ may have failed, or the version may have
improved since then.

o If not vxworks: define logmsg and taskdelay
o Defines BYTE, WORD, DWORD, ON, OFF, YES, NO, OK, ERROR,

POSITIVE, NEGATIVE, ABSOLUTE, RELATIVE
o Includes math_constants and unit_conversions.
o Defines some DEBUG switches, CLEAN, and some KEYBD key codes
o Defines MARK_UNUSED, which can somehow be used to keep a

compiler from whining that a variable is not used.
If not c++, defines bool as int.

• Unused JPLPic constants (jplpic – viscommon.h) are TRUE, FALSE,
SUCCESS, FAILURE. Nobody uses them, but some files define and use
constants of the same name.

• Redundant jplpic constants (jpl_pic – real_helpers.h) include M_PI, which is

already in the Share modules’s math_constants.h and several macros that are
already in the Share module’s common_defs.h.

• Unit conversions (share – unit_conversions.h). CL_* macros convert between

lb/kg/N, sec/msec/usec, m/km/cm/in, deg/rad, sin/cos. File includes math.h and is
included by share’s common_defs.h.

• Math constants (share – math_constants.h) include common manipulations of e,

pi, root2, and epsilon (very small number.) Included by share’s common_defs.h.

Doc 8.2 d2, p.55

Appendix: Modules covered in this document
The following modules from the module database (as of 3/30/04) looked vision related.
Blue modules are factored into the classes/functions above. Grey modules look relevant
but had no readme files or had only the default sample files, so they were not yet real, and
they are not described above. Purple modules are not factored in above because they are
going to change soon. Black modules are not factored in above because I just didn’t get
to them. You can find newer modules and releases by looking at the CLARAty website
under software, packages, which gives the complete module data base, listed in order of
most recent release.

Arc_vision-r1-00a
Analysis_carbonate-R1-01 (see note 2)
Analysis_ellipse_detect-R1-00
Analysis_region-R1-00
Analysis_rock_finder_oasis-R1-00b or
 analysis_oasis_rockfinder-R1-00
Analysis_spectra_bayes-R1-00
Analysis_shape_detection-R1-00
Analysis_terrain_morphin-R1-02a.
Analysis_vista-R1-00
Analysis_edge-R1-00a
Arc_slog_tracker-r1-00a
Arrays-r1-08b

Camera-r1-03c
Camera_image-r1-04a-build01
Camera_image_io-r1-00c
Camera_image_io_pds-r1-00
Camera_model-r1-04a-build01
Camera_model_jpl-r1-01c

Corner_detect_op-R1-01
Crater_detector

Data_io-r1-00d
Diag-r1-00
Draw_ops-r1-02

Edge_detect_op-R1-01

Feature_tracker-r1-01
Frame-r1-06b-build01
Frame_tree-r1-00
Fuzzy_logic-r1-00

Fuzzy_logic_utils-r1-00

Image-r1-04c-build01
Image_displayer-r1-03-build01
Image_ops-r1-04a
Image_pyramid-r1-01
Image_rgb-r1-01a

Image_io-r1-03d
Image_io_pnm-r1-01a
Image_io_tiff-r1-03 and
Image_tiff_io-r1-01
Image_monitor-r1-00

Jplpic-r1-01c
Jplpic_file_io-r1-00
Jplpic_libmwm-r1-00

Localizer_visual_olsen-r1-00

Map_grid-r1-01b
Matrices-R1-09c
Matrix_n_exp_n-r1-00

Numerics-r1-01a-build01

Parameter_parser-r1-00
Points-r1-08a
Point_cloud-r1-02a
Point_image-r1-01a
Pose_estimator_ekf_6d-r1-00
Project_2d3d_tracking
Project_camera_group_1394-R1-00

Doc 8.2 d2, p.56

Qt_camera-r1-00
Qt_image-r1-01a

Rectify_op-r1-03a
R8_camera_models-r1-00

Science_data-r1-00
Share-r1-09a:
Solver_1d-R1-03b
Stereo_processor-r1-03b
Stereo_vision_jpl-r1-04d
Stereo_vision_wbs-r1-00c
Stereo_vision_svs-r1-03

String_io-r1-02c
Transforms-07b-build01
Tree-r1-00

Util_open_gl-r1-01a
User_rich

Visual_odometry-r1-01b
Visual_odometry_jpl-r1-02a
Visual_odometry_tester-r1-00b
Visual_tracker-r1-00

Note 1. I have not investigated the navigator and navigator_morphin classes, which did
not seem sufficiently vision related. I have not investigated specific Camera_Impl_*
classes, which included the following: Camera_pxc200-r1-01c, camera_px610-r1-01,
camera_vx1394-r1-02-build01, camera_ieee1394-r1-01a, fd_camera-r1-01a-Build01,
camera_linux1394-r1-03b, camera_v41-r1-02, and fd_camera. You get the idea of
Camera_Impl_* from the generic text above.

Note 2. Analysis_carbonate is not a vision-related module. It seems to operate on
spectrum data instead. It defines the Carbonate_identifier and Nested_list classes the
former is complicated and not vision relevant, so I won’t describe it here. The latter is
not vision related, but I already spent the time to describe it, so here is the description.
Nested_list (analysis_carbonate – carbonate_identifier.h) is a linked list node that can be
a float, int, string, or array of Nested_list. It has a variable for each type, a flag to say
which is active, and a next pointer. It has getters for all of those. Functions to modify the
list: init, free, assign, copy (single element or also its list), insert, append, find, remove,
compare, read/load (two functions, somehow different), and write. Constructor can copy
another Nested_list or a string representing a Nested_list. Not sure how this class
does/should relate to FDM_Node (see appendix.) Not sure why the various copy
commands and constructors are separate. Not sure whether there is already an STL class
that handles nested lists.

Doc 8.2 d2, p.57

Appendix: The Data_IO Module and FDM Class

The Data_IO module facilitates reading/writing new classes to/from “ACE CDR” and
“Parse_Block” (perhaps the same as Parse_Tree) formats. The functionality is not
computer vision related, but it appears in several vision modules, so you might be
interested.

The Part You Might Care About

The Data_IO module defines two important base classes: FDM_Node and FDM_Stream.
FDM_Stream provides a common format to store data from an arbitrary class along with
I/O functions for that data. Sub-classes of FDM_Stream read/write specific file formats –
currently ACE CDRs and Parse_Trees. FDM_Node has an FDM_Stream and not much
else. Sub-classes of FDM_Node generally represent arrays or maps of FDM_Nodes.

To use Data_IO, an arbitrary class (we’ll call it myclass) must define a function to
translate its member data to/from the FDM_Stream member of a sub-class of FDM_Node
(we’ll call it subclass.) The function can be either, “bool myclass::io (subclass),” or,
“bool io_object (subclass, myclass).” FDM_Stream provides helper functions to use in
io() and io_object(), as well as functions that use io() or io_object() to convert the whole
block of data between FDM_Stream format, a myclass object, a string, a stream, a file, a
Parse_Tree, or an ACE_Message_Block. So myclass needs only the one new function in
order to get all of that functionality.

For usage examples, grep for io() and io_object() in the repository or see
http://claraty.jpl.nasa.gov/new_site/project/meetings/2003-04-10/fdm_2003_04_10.pdf .

Basic Types
Parse_Tree and Parse_Tree_Data are used to build a tree whose leaves are strings.
Unlike your standard tree or linked list, each type points to nodes of the other type, so
node types alternate as you proceed down a branch of the tree.

• Parse_Tree_Data (Data_io – parse_tree.h) can represent a string, an STL vector
of Parse_Trees, an STL map of strings-to-Parse_Trees, or null. It has a flag to
say which type of data is represented, three variables to store data for the non-null
data types, and a setter to set the flag and clear the unused variables. It also has a
refcount and functions to increment/decrement/destruct it.

• Parse_Tree (Data_io – parse_tree.h) has a parse_tree_data pointer and functions

to operate on it, including: getters/setters for pointer’s data type and map/array
elements; getters for the pointer’s map and map/array size; test of whether the
pointer’s map has a (parameter) label; copy from arbitrary object (converting to
parse_tree_data via a FDM_parse_tree); and string/stream read/write. I/O format
is { label=value; … }for maps, [element …] for arrays, strings quoted if they
have confusing characters, and multi-line (e.g., nested) maps/arrays indented.

Doc 8.2 d2, p.58

Construct a parse_tree empty, or copy another parse_tree or a string representing
a parse_tree. Operator= and destructor handle the data pointer’s refcount.

FDM_Stream and its sub-classes

• FDM (data_io – fdm.h) defines an enum with values Read and Write. It is used
to describe the direction of an FDM_Stream and its descendents.

• FDM_Stream (data_io – fdm.h) is a base class with four main parts. First, it has

an read/write flag, which is copied from a parameter FDM in the constructor and
accessed by getters. Second, the class has a vector (stack) of “nodeinfo_strs”,
each having an id (of an FDM_Node) and a refcount. A function to push an
FDM_Node onto the stack actually creates/pushes a nodinfo_strs node, assigns it
the next available id and refcount=1, and records the id and stack depth in the
FDM_Node. There are also functions to manipulate and search the stack. Third,
the class declares many virtual functions that must be overridden by descendents.
These include io_object() for standard data types; wrapped io_object() calls for
strings and ints; and functions to manipulate the FDM_Node corresponding to the
top element of the stack by popping it, setting its type (array or map), getting the
length of its array, copying a map field or array element to/from a new node and
pushing that node onto the stack. Fourth, the class defines some functions that
rely on virtual functions, thus setting an interface but not its functionality. One is
a member io_object() that takes a templated parameter and calls the global
io_object() defined with that parameter’s class, or if that class has no io_object(),
calls a global io_object() that calls the parameter class’ io(). Of course, the
specifically-declared, virtual io_object() members have precedence over the
templated one. Two other functions read and write by wrapping an io_object()
call with calls to member functions that do nothing by default.

• FDM_Parse_Tree (data_io – fdm_parse_tree.h) is a subclass of FDM_Stream
specialized to read/write a Parse_Tree. It overrides the FDM_Stream’s stack with
a vector (stack) of _Stack_Elt, each containing a parse tree (the important part)
and an index (used if the parse tree is an array). Its constructor can copy this
stack from a parameter Parse_Tree. The class redefines FDM_Stream’s virtual
functions for stack handling. Most io_object() functions are defined to call
member function io_primitive(), which gets/sets an arbitrary object from/to a
string stored in the parse tree at the top of the stack. The module defines static
functions that invoke an FDM_Parse_Tree to convert an arbitrary object to and
from a string, stream, or Parse_Tree.

• FDM_Parse_Tree_File (data_io – fdm_parse_tree_file.h) is a sub class of
FDM_Parse_Tree specialized for writing to files. It has functions to open/close
an fstream to a file, to read/write a 4-byte “magic number”, to read/write an
arbitrary Parse_Tree or the Parse_Tree at the top of the stack, and to read a
parse_tree and print a summary of its contents. Read/write direction is set in

Doc 8.2 d2, p.59

constructor. There are several flags to make sure I/O functions are called in a
reasonable order. The module provides static functions to read/write an arbitrary
object from/to a file via an FDM_Parse_Tree_File.

• FDM_CDR (data_io – fdm_cdr.h) is an FDM_stream. It is about the same as

FDM_Parse_Tree, except it operates on ACE_Message_Blocks instead of Parse
Trees, and it defines the << and >> operators.

• FDM_CDR_File (data_io – fdm_cdr_file.h) is a subclass of FDM_CDR that is

specialized to read/write files. It is basically the same as FDM_Parse_Tree_File,
except that it uses ACE instead of normal file handling, and presumably it writes
CDR things instead of Parse_Trees. It has static functions to convert between file
and message block, static function to show file contents, and a pass-through to
FDM_CDR’s check_streams().

FDM_Node and its sub-classes

• FDM_Node (data_io – fdm.h) has an FDM_stream, integer id and level (used by
the stream), and constructors. All are protected, so you must inherit the class.

• FDM_Map (data_io – fdm.h) is an FDM_Node specialized to process data stored

as label-value pairs. Its constructor copies an FDM_Node and pushes the copy
onto its own FDM_Stream’s stack. The class has a function to locate itself of its
FDM_Stream’s stack, extract a value for a given label from the stack into a new
node, push that onto the stack, and read/write it to/from a parameter object.

• FDM_Array (data_io – fdm.h) is an FDM_Node with some extra functions.

Specifically, there is a function to determine the length of the array stored in the
node’s stream, and functions to copy the “next” element(s) from that array to the
top of the stream’s stack and then to/from a parameter object. Can construct by
copying another FDM_Array or by copying an FDM_Node and stacking the copy
in the new node’s stream.

• FDM_Untyped_Node (data_io – fdm.h) is an FDM_Node with a function,

value(), that converts between the FDM_Node’s stream and a parameter object
using the object’s io_object() or io() member.

• FDM_Singleton (data_io – fdm.h) is an FDM_Node with a pass-through to an

undefined object. Construct from an FDM_Node or a FDM_Singleton, though the
latter is not defined.

Other Stuff
There are some additional pieces that seem irrelevant, but since they were there, I have
documented them.

Doc 8.2 d2, p.60

• fdm_error (data_io – fdm.h) couts a char * with some text on either side.

• FDM_File (data_io – fdm_file.h) has static functions to open a stream to a file
and to open, read, summarize, and close a file. Both read from an ACE socket to
determine whether the file is CDR or Parse_Tree, and then call FDM_CDR_File
or FDM_Parse_Tree_File functions.

• ACE_transfer_helper (data_io – ace_transfer.h and .cc) has a single, static

function to send a large ACE_Message_Block (data packet) over an
ACE_SOCK_Stream.

• Data_Receiver (data_io – ace_transfer.h and data_sender.def.h) is an ACE

socket, an address, and an is-connected flag. It has functions to connect to a host
and port, read data (templated type) from socket, and disconnect.

• Data_Sender (data_io – ace_transfer.h and data_sender.def.h) has an address to

listen to, a flag to record whether it is listening, and a (templated type) object
from which it can read data. The constructor records the data-reading object. Has
a function that, through a surprisingly complicated series of other functions and
spawned threads, listens at a parameter port, accepts a connection, calls the data-
reading object to get some data, and sends it on the connection (possibly using
ACE_Transfer_Helper.)

• Data_Publisher (data_io – ace_transfer.h and data_sender.def.h) lets you send

data to multiple places. Constructor creates and registers a member event handler.
Start() spawns a thread that accepts ACE socket connections and adds them to a
member subscriber list. Stop() kills the thread and closes any subscribed sockets.
Publish() pushes (templated type) data out along all subscribed connections.

• Data_Subscriber (data_io – ace_transfer.h and data_sender.def.h). Subscribe()

connects to a Data_publisher at parameter host and port, then spawns a thread
that continuously tries to read from there into a member buffer. Two functions
copy the buffer to a parameter buffer, differing by some use of a mutex.
Unsubscribe() shuts down the thread.

